[1]董小圆,彭珍瑞,殷红,等.传感器优化布置的距离系数-Fisher信息准则[J].智能系统学报,2017,12(01):32-37.[doi:10.11992/tis.201604026]
 DONG Xiaoyuan,PENG Zhenrui,YIN Hong,et al.Distance coefficient-Fisher information criterion for optimal sensor placement[J].CAAI Transactions on Intelligent Systems,2017,12(01):32-37.[doi:10.11992/tis.201604026]
点击复制

传感器优化布置的距离系数-Fisher信息准则(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年01期
页码:
32-37
栏目:
出版日期:
2017-02-25

文章信息/Info

Title:
Distance coefficient-Fisher information criterion for optimal sensor placement
作者:
董小圆 彭珍瑞 殷红 董海棠
兰州交通大学 机电工程学院, 甘肃 兰州 730070
Author(s):
DONG Xiaoyuan PENG Zhenrui YIN Hong DONG Haitang
School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
关键词:
传感器优化布置损伤识别Fisher信息矩阵信息冗余欧氏距离灵敏度分析模态分析
Keywords:
optimal sensor placementdamage detectionFisher information matrixinformation redundancyEuclidean distancesensitivity analysismodal analysis
分类号:
TP391
DOI:
10.11992/tis.201604026
摘要:
以损伤参数识别为目标,基于传统Fisher信息准则的传感器优化布置会出现测点局部聚集现象,导致信息冗余,不利于损伤定位。针对此问题,首先以反映信息独立程度的距离系数对候选自由度的Fisher信息矩阵进行加权修正;然后以修正后的有效信息矩阵行列式最大化为目标,采用逐步累加的方法得到基于距离系数-Fisher信息准则的传感器优化布置方案。采用该方法对一个16自由度剪切型弹簧质量模型进行传感器优化布置。结果表明,该方法能有效避免测点聚集现象,解决信息冗余问题。
Abstract:
For damage parameters identification, when the traditional Fisher information criterion is used for optimal sensor placement, the measuring points are susceptible to gathering in a local sensitivity area, which results in information redundancy and this is not conducive to damage location. To avoid aggregation of the measuring points and improve the ability of the damage location, the distance coefficient, which reflects the degree of information independence, was used first to correct the Fisher information matrix, and then the measuring points were obtained by maximizing the determinant of the modified information matrix using a sequential algorithm. The method was employed to design the optimal sensor configuration for a simple 16-DOF chain mass-spring model. The results show the method can effectively avoid the aggregation of measuring points and solve the problem of information redundancy.

参考文献/References:

[1] SHADAN F, KHOSHNOUDIAN F, ESFANDIARI A. A frequency response-based structural damage identification using model updating method[J]. Structural control & health monitoring, 2016, 23(2): 286-302.
[2] 胡焕. 基于频响函数的动力学模型修正方法研究[D]. 上海: 上海交通大学, 2010. HU Huan. Investigation of dynamics model updating method based on FRF[D]. Shanghai: Shanghai Jiao Tong University, 2010.
[3] 卢洋. 基于频响函数模式置信准则的桥梁损伤动力识别方法研究[D]. 北京: 北京交通大学, 2014. LU Yang. Study on dynamic identification method for bridge damage based on signature assuerance cretrion of frequency response functions[D]. Beijing: Beijing Jiaotong University, 2014.
[4] HE Can, XING Jianchun, LI Juelong, et al. A new optimal sensor placement strategy based on modified modal assurance criterion and improved adaptive genetic algorithm for structural health monitoring[J]. Mathematical problems in engineering, 2015, 2015: 1-10.
[5] DEBNATH N, DUTTA A, DEB S K. Placement of sensors in operational modal analysis for truss bridges[J]. Mechanical systems and signal processing, 2012, 31: 196-216.
[6] YI T H, WANG X, LI H N. Optimal placement of triaxial accelerometers using modal kinetic energy method[J]. Applied mechanics and materials, 2012, 166-169: 1583-1586.
[7] 伊廷华, 李宏男, 顾明. 基于模型缩聚的广州新电视塔传感器优化布置研究[J]. 工程力学, 2012, 29(3): 55-61. YI Tinghua, LI Hongnan, GU Ming. Research on optimal sensor placement of Guangzhou new TV tower based on model reduction[J]. Engineering mechanics, 2012, 29(3): 55-61.
[8] UDWADIA F E. Methodology for optimum sensor locations for parameter identification in dynamic systems[J]. Journal of engineering mechanics, 1994, 120(2): 368-390.
[9] 李东升, 张莹, 任亮, 等. 结构健康监测中的传感器布置方法及评价准则[J]. 力学进展, 2011, 41(1): 39-50. LI Dongsheng, ZHANG Ying, REN Liang, et al. Sensor deployment for structural health monitoring and their evaluation[J]. Advances in mechanics, 2011, 41(1): 39-50.
[10] KAMMER D C. Sensor placement for on-orbit modal identification and correlation of large space structures[J]. Journal of guidance, control, and dynamics, 1991, 14(2): 251-259.
[11] KAMMER D C, TINKER M L. Optimal placement of triaxial accelerometers for modal vibration tests[J]. Mechanical systems and signal processing, 2004, 18(1): 29-41.
[12] YI Tinghua, LI Hongnan, WANG Chuanwei. Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm[J]. Structural control & health monitoring, 2016, 23(4): 719-734.
[13] CASTRO-TRIGUERO R, SAAVEDRA FLORES E I, DIAZDELAO F A, et al. Optimal sensor placement in timber structures by means of a multi-scale approach with material uncertainty[J]. Structural control & health monitoring, 2014, 21(12): 1437-1452.
[14] NIMITYONGSKUL S, KAMMER D C. Frequency response based sensor placement for the mid-frequency range[J]. Mechanical systems and signal processing, 2009, 23(4): 1169-1179.
[15] FRISWELL M I, CASTRO-TRIGUERO R. Clustering of sensor locations using the effective independence method[J]. AIAA journal, 2015, 53(5): 1388-1391.
[16] LI Shiqi, ZHANG Heng, LIU Shiping, et al. Optimal sensor placement using FRFs-based clustering method[J]. Journal of sound and vibration, 2016, 385: 69-80.
[17] 李宾宾. 基于信息论的结构健康监测传感器优化布置[D]. 大连: 大连理工大学, 2012. LI Binbin. Information theoretic optimal sensor placement in structural health monitoring[D]. Dalian: Dalian University of Technology, 2012.
[18] 周述美, 鲍跃全, 李惠. 基于子结构灵敏度分析的传感器优化布置[J]. 地震工程与工程振动, 2014, 34(4): 242-247. ZHOU Shumei, BAO Yuequan, LI Hui. Optimal sensor placement based on substructure sensitivity analysis[J]. Earthquake engineering and engineering dynamic, 2014, 34(4): 242-247.
[19] 白雪. 聚类分析中的相似性度量及其应用研究[D]. 北京: 北京交通大学, 2012. BAI Xue. Similarity measures in cluster analysis and its applications[D]. Beijing: Beijing Jiaotong University, 2012.
[20] 何龙军, 练继建, 马斌, 等. 基于距离系数-有效独立法的大型空间结构传感器优化布置[J]. 振动与冲击, 2013, 32(16): 13-18. HE Longjun, LIAN Jijian, MA Bin, et al. Optimal sensor placement for large space structures based on distance coefficient-effective independence method[J]. Journal of vibration and shock, 2013, 32(16): 13-18.

相似文献/References:

[1]彭珍瑞,赵宇,殷红,等.基于Memetic算法的桥梁传感器优化布置[J].智能系统学报,2014,9(06):685.[doi:10.3969/j.issn.1673-4785.201309018]
 PENG Zhenrui,ZHAO Yu,YIN Hong,et al.Optimal sensor placement of a bridge based on memetic algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(01):685.[doi:10.3969/j.issn.1673-4785.201309018]

备注/Memo

备注/Memo:
收稿日期:2016-4-21;改回日期:。
基金项目:国家自然科学基金项目(61463028);甘肃省自然科学基金项目(1506RJZA069).
作者简介:董小圆,男,1988年生,硕士研究生,主要研究方向为传感器优化布置;彭珍瑞,男,1972年生,教授,博士生导师,主要研究方向为智能优化、测控技术。现主持国家自然科学基金项目1项、甘肃省科技支撑计划项目1项、兰州市科技计划项目1项。发表学术论文30余篇,获得实用新型专利10余件;殷红,女,1978年生,副教授,主要研究方向为智能优化和模态分析。主持甘肃省自然基金项目1项。近年来获得甘肃省教育厅教学成果奖、甘肃省高校科技进步奖等奖项。发表学术论文近20篇,编写教材5部。
通讯作者:彭珍瑞.E-mail:pzri@163.com.
更新日期/Last Update: 1900-01-01