[1]赵克勤,赵森烽.赵森烽-克勤概率的赌本分配研究与期望值定理[J].智能系统学报,2017,(05):608-615.[doi:10.11992/tis.201604020]
 ZHAO Keqin,ZHAO Senfeng.Distribution of gambling capital and expectation value theorem for Zhao Senfeng-Keqin probability[J].CAAI Transactions on Intelligent Systems,2017,(05):608-615.[doi:10.11992/tis.201604020]
点击复制

赵森烽-克勤概率的赌本分配研究与期望值定理(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2017年05期
页码:
608-615
栏目:
出版日期:
2017-10-25

文章信息/Info

Title:
Distribution of gambling capital and expectation value theorem for Zhao Senfeng-Keqin probability
作者:
赵克勤12 赵森烽1
1. 诸暨市联系数学研究所, 浙江 诸暨 311811;
2. 浙江大学 非传统安全与和平发展研究中心, 浙江 杭州 310058
Author(s):
ZHAO Keqin12 ZHAO Senfeng1
1. Zhuji Institute of Connection Mathematics, Zhuji 311811, China;
2. Center for Non-traditional Security and Peaceful Development Studies, Zhejiang University, Hangzhou 310058, China
关键词:
赌本分配数学期望赵森烽-克勤概率(联系概率)不确定性期望值定理
Keywords:
distribution of gambling capitalmathematical expectationZhao Senfeng-Keqin probability (contact probability)uncertaintyexpectation value theorem
分类号:
TP18
DOI:
10.11992/tis.201604020
摘要:
针对概率论发展史上合理分配赌本问题,把赵森烽-克勤概率用于合理分配赌本需要的最少赌博次数研究,结果发现,该问题中基于经典概率得出的数学期望不会在实际中出现,实际中出现的是基于赵森烽-克勤概率的"数学期望"的两个极端值。利用赵森烽-克勤概率能客观地反映出给定规则下最少赌博次数与最多赌博次数时的赌博结果,同时刻画出赌博输赢的经典期望值和实际值,从而为有针对性地制定或修改赌博策略和合理地分配赌本提供依据,在此基础上给出期望值不确定定理。文中以机器人服务收费为例说明该定理的现实意义。
Abstract:
With respect to the reasonable distribution of gambling capital in the developmental history of probability theory, Zhao Senfeng-Keqin probability has been used to investigate the minimum number of gambling times necessary for the rational allocation of the minimum amount of gambling capital. Results have shown that the mathematical expectation for this problem, based on classical probability, failed to occur in practice. What appeared instead are two extreme values of "mathematical expectation" based on the Zhao Senfeng-Keqin probability, which can objectively reflect the gambling results within the smallest and largest number of gambling times for a given rule. In addition, it describes both the classic expectation value and the actual value, thereby providing a basis for formulating or amending specific gambling tactics and the reasonable allocation of gambling capital. The result is an uncertainty theorem for the expectation value. In this paper, we illustrate the practical significance of this theorem by giving an example of service charging on a robot.

参考文献/References:

[1] 赵森烽,赵克勤.概率联系数化的原理与联系概率在概率推理中的应用[J].智能系统学报, 2012, 7(3):200-205.ZHAO Senfeng, ZHAO Keqin. The principle of the probability of connection number and application in probabilistic reasoning[J]. CAAI transactions on intelligent systems, 2012, 7(3):200-205.
[2] 赵森烽,赵克勤.几何概型的联系概率与概率的补数定理[J].智能系统学报, 2013, 8(1):11-15.ZHAO Senfeng, ZHAO Keqin. Contact probability (complex probability) of geometry probability and probability of the complement number theorem[J]. CAAI transactions on intelligent systems, 2013, 8(1):11-15.
[3] 赵森烽,赵克勤. 基于频率的赵森烽-克勤概率与随机事件的转化定理[J]. 智能系统学报, 2014, 9(1):53-69.ZHAO Senfeing, Zhao Keqin. Probability based on the frequency and random events transformation theorem[J]. CAAI transactions on intelligent systems, 2014,9(1):53-69.
[4] 赵克勤.集对分析及其初步应用[M].杭州:浙江科学技术出版社, 2000:1-198.
[5] 赵克勤, 宣爱理. 集对论——一种新的不确定性理论方法与应用[J]. 系统工程, 1996, 14(1):18-23.Zhao Keqin, Xuan Aili. Set pair theory-a new theory method of non-define and its applications[J]. Systems engineering, 1996, 14(1):18-23.
[6] 赵克勤.集对分析的不确定性理论在AI中的应用[J].智能系统学报, 2006, 1(2):16-25.ZHAO Keqin.The application of uncertainty systems theory of set pair analysis (SPA)in the artiartificial intelligence[J].CAAI transactions on intelligent systems, 2006,1(2):16-25.
[7] 赵森烽,赵克勤. 联系概率的由来及其在风险决策中的应用[J].数学的实践与认识, 2013, 43(4):165-171.ZHAO Senfeng, ZHAO Keqin. The contact probability in risk decision-making medium application[J].Mathematics in practice and theory, 2013, 43(4):165-171.
[8] 赵克勤,赵森烽.贝叶斯概率向赵森烽-克勤概率的转换与应用[J].智能系统学报, 2015, 10(1):51-61.ZHAO Keqin, ZHAO Senfeng. Bayes probability transition to Zhao Senfeng-Keqin probability and its application[J]. CAAI transactions on intelligent systems, 2015, 10(1):51-61.
[9] 王梓坤.概率论基础及其应用[M].北京:科学出版社, 1979:1-218.
[10] 赵秀恒,米立民.概率论与数理统计[M].北京:高等教育出版社, 2008:53-55.
[11] 孙荣恒.趣味随机问题[M].北京:科学出版社, 2009:18-19.
[12] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社, 2011:77-85.
[13] 赵克勤.集对分析与熵的研究[J].浙江大学学报:社科版, 1992, 38(2):65-72.ZHAO Keqin. Set pair analysis and entropy research[J].Journal of Zhejiang university:social science edition, 1992, 38(2):65-72.
[14] 赵克勤.集对分析及其初步应用[J].大自然探索, 1994, 13(1):67-72.ZHAO Keqin. Set pair analysis and its preliminary application[J].Exploration of nature, 1994, 13(1):67-72.
[15] 赵克勤.集对分析对不确定性的描述和处理[J].信息与控制, 1995, 24(3):162-166.ZHAO Keqin. Disposal and discription of uncertainties based on the Set pair analysis[J].Information and control, 1995, 24(3):162-166.
[16] 赵克勤.试论集对分析与概率论的关系[C]//中南模糊系统与数学论文集. 长沙:湖南科技出版社, 1995:253.
[17] 赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008, 3(6):476-486.ZHAO Keqin. Thetheoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI transactions on intelligent systems, 2008, 3(6):476-486.
[18] 赵克勤,赵森烽.奇妙的联系数[M].北京:知识产权出版社, 2014:1-206.
[19] 刘秀梅,赵克勤.区间数决策集对分析[M].北京:科学出版社, 2014:1-214.
[20] 蒋云良,赵克勤,刘以安,等.信息处理集对分析[M].北京:清华大学出版社, 2015:1-228.

备注/Memo

备注/Memo:
收稿日期:2016-04-18。
基金项目:国家社科基金重大项目(12&ZD099).
作者简介:赵克勤,男,1950年生,研究员,主要研究方向为信息处理、集对分析、联系数学、联系科学。浙江大学非传统安全与和平发展中心集对分析研究所所长,原中国人工智能学会第5、6、7三届学会理事,人工智能基础专业委员会副主任,集对分析联系数学专业筹备委员会主任;1989年提出集对分析(联系数学),发表学术论文100余篇,出版专著3部;赵森烽,男,1993年生,硕士研究生,主要研究方向为信息处理、集对分析联系数学。发表学术论文6篇。
通讯作者:赵克勤.E-mail:spacnm@163.com
更新日期/Last Update: 2017-10-25