[1]王超,乔俊飞.参数自适应粒子群算法的给水管网优化研究[J].智能系统学报编辑部,2015,10(5):722-728.[doi:10.11992/tis.201410036]
 WANG Chao,QIAO Junfei.An parameter adaptive particle swarm optimization foroptimal design of water supply systems[J].CAAI Transactions on Intelligent Systems,2015,10(5):722-728.[doi:10.11992/tis.201410036]
点击复制

参数自适应粒子群算法的给水管网优化研究(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年5期
页码:
722-728
栏目:
出版日期:
2015-10-25

文章信息/Info

Title:
An parameter adaptive particle swarm optimization foroptimal design of water supply systems
作者:
王超12 乔俊飞12
1. 北京工业大学 电子信息与控制工程学院, 北京 100124;
2. 北京工业大学 计算智能与智能系统北京市重点实验室, 北京 100124
Author(s):
WANG Chao12 QIAO Junfei12
1. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
2. Beijing Key Laboratory of Computational Intelligence and Intelligence System, Beijing University of Technology, Beijing 100124, China
关键词:
给水管网系统粒子轨迹相似度参数调整自适应粒子群
Keywords:
water supply systemparticle trajectoriessimilarityparameter adjustmentadaptive particle swarm op-timization
分类号:
TP18
DOI:
10.11992/tis.201410036
文献标志码:
A
摘要:
针对粒子群算法在解决给水管网优化问题时存在容易陷入局部最优的缺点,通过分析粒子的运动轨迹和相似程度,提出一种参数自适应粒子群算法。该算法利用种群粒子与期望粒子之间相似度的大小,动态调整算法参数,平衡算法全局和局部搜索能力,利用分期变异策略增加种群多样性,保证算法收敛于全局最优值。将改进算法用于优化汉诺塔管网和纽约管网2个经典的管网案例,证明算法可以有效应用于给水管网这类组合优化问题。将该算法优化实际的管网改扩建案例,结果表明,所提出的算法具有更好的寻优性能和收敛性能。
Abstract:
Particle swarm optimization easily falls into a local optimum when solving water supply optimization prob-lems. In order to solve this weakness, by analyzing particle trajectories and the similarity of particles, this paper proposes a parameter adaptive particle swarm optimization (PAPSO). By estimating the degree of similarity between particles and expected particles, the algorithm dynamically adjusts parameters and balances the global and local search ability. The algorithm uses the variation strategy of staging to increase the population diversity and ensure that it converges to the global optimum. The tower of Hanoi network and New York network have been optimized by the improved algorithm, and the result shows that the PAPSO algorithm can be effectively applied to the combinato-rial optimization of water supply pipeline networks. The proposed algorithm has been applied to optimize an actual pipe network reconstruction case and the result shows that the algorithm has better optimization and convergence performance.

参考文献/References:

[1] MURPHY L J, SIMPSON A R, Dandy G C. Design of a pipe network using genetic algorithms[J]. Water-Melbourne Then Artarmon, 1993, 20(4):40-42.
[2] ABKENAR S M S, CHASE D V, STANLEY S D, et al. Optimizing pumping system for sustainable water distribution network by using genetic algorithm[C]//2013 International Green Computing Conference. Arlington, USA, 2013:1-6.
[3] BLINCO L J, SIMPSON A R, LAMBERT M F, et al. Genetic algorithm optimization of operational costs and greenhouse gas emissions for water distribution systems[J]. Procedia Engineering, 2014, 89:509-516.
[4] DINARDO A, DINATALE M, GRECO R, et al. Ant algorithm for smart water network partitioning[J]. Procedia Engineering, 2014, 70:525-534.
[5] MOOSAVIAN N, ROODSARI B K. Soccer league competition algorithm:a novel meta-heuristic algorithm for optimal design of water distribution networks[J]. Swarm and Evolutionary Computation, 2014, 17:14-24.
[6] LIU Boning, RECKHOW D A, LI Yun. A two-site chlorine decay model for the combined effects of pH, water distribution temperature and in-home heating profilesusing differential evolution[J]. Water Research, 2014, 53:47-57.
[7] NASER M, ROODSARIB K. Soccer league competition algorithm:A novel meta-heuristic algorithm for optimal design of water distribution networks[J]. Swarm and Evolutionary Computation, 2014, 17:14-24.
[8] WANG Hongxiang, GUO Wenxian. Calibrating chlorine wall decay coefficients of water distribution systems based on hybrid PSO[C]//Sixth International Conference on Natural Computation (ICNC). Yantai, China, 2010:3856-3860.
[9] MONTALVO I M, IZQUIERDO J, PÉREZ R, et al. A diversity-enriched variant of discrete PSO applied to the design of water distribution networks[J]. Engineering Optimization, 2008, 40(7):655-668.
[10] ZARGHAMIM, HAJYKAZEMIAN H. Urban water resources planning by using a modified particle swarm optimization algorithm[J]. Resources, Conservation and Recycling, 2013, 70:1-8.
[11] HASHEMI A B, MEYBODI M R. A note on the learning automata based algorithms for adaptive parameter selection in PSO[J]. Applied Soft Computing, 2011, 11(1):689-705.
[12] DE FÁTIMA ARAU’JO T, UTURBEY W. Performance assessment of PSO, DE and hybrid PSO-DE algorithms when applied to the dispatch of generation and demand[J]. International Journal of Electrical Power & Energy Systems, 2013, 47:205-217.
[13] 刘建华, 樊晓平, 瞿志华. 一种基于相似度的新型粒子群算法[J]. 控制与决策, 2007, 22(10):1155-1159.LIU Jianhua, FAN Xiaoping, QU Zhihua. A new particle swarm optimization algorithm based on similarity[J]. Control and Decision, 2007, 22(10):1155-1159.
[14] COELHO B, ANDRADE-CAMPOS A. Efficiency achievement in water supply systems-a review[J]. Renewable and Sustainable Energy Reviews, 2014, 30:59-84.
[15] ANNELIES D C, KENNETH S. Optimisation of gravity-fed water distribution network design:a critical review[J]. European Journal of Operational Research, 2013, 228(1):1-10.
[16] 李宁, 孙德宝, 邹彤, 等. 基于差分方程的PSO算法粒子运动轨迹分析[J]. 计算机学报, 2006, 29(11):2052-2061.LI Ning, SUN Debao, ZOU Tong, et al. An analysis for a particle’s trajectory of PSO based on difference equation[J]. Chinese Journal of Computers, 2006, 29(11):2052-2061.
[17] VANDEN BERGH F. An analysis of particle swarm optimizers[D]. Pretoria, South Africa:University of Pretoria, 2002:81-83.
[18] SEDKI A, OUAZAR D. Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems[J]. Advanced Engineering Informatics, 2012, 26(3):582-591.
[19] SAVIC D A, WALTERS G A. Genetic algorithms for least cost design of water distribution networks[J]. Journal of Water Resources Planning and Management, 1997, 123(2):67-77.
[20] IDEL M, JOAQUIN I, RAFAEL P G, et al. Improved performance of PSO with self-adaptive parameters for computing the optimal design of water supply systems[J]. Engineering Applications of Artificial Intelligence, 2010, 23(5):727-735.
[21] SURIBABU C R. Differential evolution algorithm for optimal design of water distribution networks[J]. Journal of Hydroinformatics, 2010, 12(1):66-82.

相似文献/References:

[1]孟勤超,杨翠丽,乔俊飞.基于改进SPEA2算法的给水管网多目标优化设计[J].智能系统学报编辑部,2018,13(01):118.[doi:10.11992/tis.201701012]
 MENG Qinchao,YANG Cuili,QIAO Junfei.Multi-objective optimization design of water distribution systems based on improved SPEA2 algorithm[J].CAAI Transactions on Intelligent Systems,2018,13(5):118.[doi:10.11992/tis.201701012]

备注/Memo

备注/Memo:
收稿日期:2014-10-27;改回日期:。
基金项目:国家自然科学基金重点资助项目(61034008);国家自然科学基金杰出青年资助项目(61225016);北京市自然科学基金资助项目(4122006).
作者简介:王超,男,1987年生,硕士研究生,主要研究方向为智能计算和智能优化算法;乔俊飞,男,1968年生,教授,博士,主要研究方向为复杂过程建模、优化与控制和智能优化控制。主持国家自然科学基金项目2项、国家“863”计划项目2项,发表学术论文100余篇,出版专著2部,获国家发明专利授权15项。
通讯作者:乔俊飞.E-mail:isibox@sina.com.
更新日期/Last Update: 2015-11-16