[1]许楠,刘桂阳,徐耀群.带有高斯扰动的混沌神经网络及应用[J].智能系统学报,2014,9(04):444-448.[doi:10.3969/j.issn.1673-4785.201308013]
 XU Nan,LIU Guiyang,XU Yaoqun.A novel chaotic neural network with Gaussian disturbance and its application[J].CAAI Transactions on Intelligent Systems,2014,9(04):444-448.[doi:10.3969/j.issn.1673-4785.201308013]
点击复制

带有高斯扰动的混沌神经网络及应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年04期
页码:
444-448
栏目:
出版日期:
2014-08-25

文章信息/Info

Title:
A novel chaotic neural network with Gaussian disturbance and its application
作者:
许楠1 刘桂阳1 徐耀群2
1. 黑龙江八一农垦大学 信息技术学院, 黑龙江 大庆 163319;
2. 哈尔滨商业大学 系统工程研究所, 黑龙江 哈尔滨 150028
Author(s):
XU Nan1 LIU Guiyang1 XU Yaoqun2
1. College of Information Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
2. Institute of System Engineering, Harbin University of Commerce, Harbin 150028, China
关键词:
高斯函数扰动混沌神经网络内部状态
Keywords:
Gaussian functionGaussian disturbancechaotic neural networkinside state
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201308013
摘要:
为考查新型混沌神经网络的抗干扰能力, 在Chen’s混沌神经网络模型的内部状态中加入高斯函数扰动项。通过分析该网络神经元的混沌特性, 说明了模拟退火参数及高斯函数的宽度参数对混沌行为的影响;分析了不同宽度值时的高斯曲线以及内部状态随迭代次数的变化情况, 说明了扰动强弱敏感依赖于该参数的取值。将带有高斯扰动的混沌神经网络模型应用于解决旅行商最短路径问题(TSP), 通过仿真实验, 说明若合理调整网络参数以及径向基宽度参数, 则该新型网络可以具有较高的抗扰动能力, 从而使得网络能够避免陷入局部极小点, 并以较快速度求得全局最优解。
Abstract:
A Gaussian function disturbance item is added into the internal state of Chen’s chaotic neural network for examining the anti-disturbance ability of the new chaotic neural network. The chaotic dynamics behavior of the single chaotic neuron is analyzed. The chaotic behavior is affected by the parameter of the simulated annealing and the width of the Gaussian function. The Gaussian curve and the change of the inside state are analyzed in different widths. The amount of disturbance depends on the width. This chaotic neural network with Gaussian disturbance is used to solve traveling salesman problem. The simulation results indicate that this network can avoid the limits of being trapped into the local minima and its capability of resisting the disturbance is perfect.

参考文献/References:

[1] 黄永聪,张旭,吴义纯,等. 改进的径向基函数网络的研究及应用[J]. 计算机技术与发展, 2010, 20(5): 164-167.HUANG Yongcong, ZHANG Xu, WU Yichun, et al. Research and application of improved genetic algorithm-based RBFANN[J]. Computer Technology and Development,2010, 20(5): 164-167.
[2] CHEN L, AIHARA K. Chaotic simulated annealing by a neural network model with transient chaos[J]. Neural Networks, 1995, 8(6): 915-930.
[3] 张慧,刘湘南,黄刚. 基于模拟退火遗传算法的GMDH网络模型[J]. 华中师范大学学报:自然科学版, 2013, 47(2): 24-28.ZHANG Hui,LIU Xiangnan,HUANG Gang. The GMDH network model based on simulated annealing and genetic algorithm[J]. Journal of Huazhong Normal University: Natural Sciences Edition, 2013, 47(2): 24-28.
[4] HOPFIELD J. Neural networks and physical systems with emergent collective computational abilities[C]//Proceedings of the National Academy of Sciences., 1982, 79: 2554-2558.
[5] 许楠,刘丽杰. 径向基函数混沌神经元系统及其应用[J].计算机工程与应用,2014, 50(4): 73-76.XU Nan, LIU Lijie. RBF chaotic neuron system and its application[J]. Compter Engineering and Application, 2014, 50(4): 73-76.
[6] 徐耀群,何少平,张莉. 带扰动的混沌神经网络研究[J]. 计算机工程与应用, 2008, 44(36): 66-69.XU Yaoqun, HE Shaoping, ZHANG Li. Research on chaotic neural network with disturbance[J]. Compter Engineering and Application, 2008, 44(36): 66-69.
[7] 代桂平,王勇,侯亚荣. 基于遗传算法的TSP问题求解算法及其系统[J]. 微计算机信息, 2010, 26(4): 15-17.DAI Guiping, WANG Yong, HOU Yarong. A TSP solving algorithm and system based on genetic algorithm[J]. Microcomputer Information, 2010, 26(4): 15-17.
[8] 徐耀群,杨雪玲. 一类具有反三角函数自反馈的混沌神经网络及其应用[J]. 哈尔滨商业大学学报:自然科学版, 2010(3): 72-76.XU Yaoqun,YANG Xueling. A class of chaotic neural networks with anti-trigonometric function self-feedback and its application[J]. Journal of Harbin University of Commerce: Natural Sciences Edition,2010,6(3): 72-76.

相似文献/References:

[1]胡志强,李文静,乔俊飞.带扰动的变频正弦混沌神经网络研究[J].智能系统学报,2018,13(04):493.[doi:10.11992/tis.201703003]
 HU Zhiqiang,LI Wenjing,QIAO Junfei.Frequency-conversion sinusoidal chaotic neural network with disturbance feature[J].CAAI Transactions on Intelligent Systems,2018,13(04):493.[doi:10.11992/tis.201703003]

备注/Memo

备注/Memo:
收稿日期:2013-08-08。
基金项目:黑龙江省教育厅科学技术研究资助项目(面上)(12531456)
通讯作者:许楠.E-mail:xuaoe80@126.com
更新日期/Last Update: 1900-01-01