[1]拓守恒.一种优化神经网络的教与学优化算法[J].智能系统学报,2013,8(04):327-332.[doi:10.3969/j.issn.1673-4785.201305026]
 TUO Shouheng.A modified teaching-learning-based optimization algorithm and application in neural networks[J].CAAI Transactions on Intelligent Systems,2013,8(04):327-332.[doi:10.3969/j.issn.1673-4785.201305026]
点击复制

一种优化神经网络的教与学优化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年04期
页码:
327-332
栏目:
出版日期:
2013-08-25

文章信息/Info

Title:
A modified teaching-learning-based optimization algorithm and application in neural networks
文章编号:
1673-4785(2013)04-0327-06
作者:
拓守恒
陕西理工学院 数学与计算机科学学院, 陕西 汉中 723001
Author(s):
TUO Shouheng
School of Mathematics and Computer Science, Shaanxi University of Technology, Hanzhong 723001, China
关键词:
改进的教与学优化算法 “自学”机制神经网络函数拟合齿轮箱故障诊断
Keywords:
modified teaching-learning-based optimization algorithm “selflearning” mechanism neural network function fitting gearbox fault diagnosis
分类号:
TP31
DOI:
10.3969/j.issn.1673-4785.201305026
文献标志码:
A
摘要:
为了提高BP神经网络的输出精度,提出一种改进的教与学优化算法进行神经网络中的权值和阈值的优化调整.算法对基本的教与学优化算法的“教”阶段和“学”阶段分别进行改进,并提出一种“自学”机制来增强算法的学习能力.通过函数拟合实验和拖拉机齿轮箱故障诊断实验进行算法性能测试,结果表明,与遗传算法和基本的教与学优化算法相比,该算法具有收敛速度快、求解精度高等优势.
Abstract:
In order to improve the output accuracy of back propagation neural network, a modified teaching-learning-based optimization (MTLBO) algorithm is proposed to train the weight and threshold value of neural network. In the MTLBO method, the “Teaching” phase and “Learning” phase were modified on the basis of TLBO algorithm, and a new “SelfLearning” mechanism was proposed to intensify global searching ability. Finally, the function fitting experiment and the tractor gearbox diagnosis experiment were used to test the performance of the proposed algorithm. Simulations show that this algorithm has a better convergence, prediction accuracy and robustness compared to the genetic algorithm (GA) and the basic teaching-learning-based optimization (TLBO) algorithm.

参考文献/References:

[1]YU X H. Can backpropagation error surface not have local minims[J]. Neural Networks, 1992, 3(6): 1009-1021.
[2]YU X H, CHEN G A. On the local minima free condition of backpropagation learning[J]. IEEE Transactions on Neural Networks, 1995, 6(5): 1300-1303.
[3]GOLDBERG D E, KORB B, DEB K. Messy genetic algorithms: motivation, analysis, and first results[J]. Complex Systems, 1989, 3(5): 493-530.
[4]CLERC M, KENNEDY J. The particle swarm—explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (1): 58-73.
[5]RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer Aided Design, 2011, 43(3): 303-315.
[6]RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183 (1): 1-15.
[7]MATEJ C, LIU S H, MERNIK L. A note on teaching-learning-based optimization algorithm[J]. Information Sciences, 2012, 212 (1): 79-93.
[8]RAO R V, PATEL V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2012, 3(4): 535-560.
[9]ZOU D X, GAO L Q, WU J H, et al. A novel global harmony search algorithm for reliability problems[J]. Computers and Industrial Engineering, 2010, 58 (2): 307-316.
[10]GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search[J]. Simulation, 2001, 76(2): 60-68.
[11]TUO Shouheng, YONG Longquan. An improved harmony search algorithm with chaos[J]. Journal of Computational Information Systems, 2012, 8(10): 4269-4276.
[12]赵爽. 基于SVM 的拖拉机齿轮箱多故障诊断方法研究[J]. 农机化研究, 2011, 33(5): 207-209.
        ZHAO Shuang. Research of multi-faults in the Tractor’s gearbox based on support vector machines method[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 207-209.
[13]史峰,王辉,胡斐,等. Matlab智能算法30个案例分析[M]. 北京: 北京航空航天大学出版社, 2011: 137-144.
[14]杜文莉,周仁,赵亮,等. 基于量子差分进化算法的神经网络优化方法[J]. 清华大学学报:自然科学, 2012, 52(3): 331-335.
        DU Wenli, ZHOU Ren, ZHAO Liang, et al. Cooperative quantum differential evolution algorithm based method for optimizing neural networks[J].Journal of Tsinghua University: Science and Technology, 2012, 52(3): 331-335. 

备注/Memo

备注/Memo:
收稿日期:2013-05-09.     网络出版日期:2013-08-27. 
基金项目:陕西省教育厅科研计划资助项目(12JK0863);陕西理工科研项目(SLGKY 12-16).
通信作者:拓守恒. E-mail:tuo_sh@126.com.
作者简介:拓守恒,男,1978年生,讲师,CCF会员,主要研究方向为智能优化算法与智能信息处理,发表学术论文多篇.
更新日期/Last Update: 2013-09-25