[1]廖倩芳,李 柠,李少远.一种数据驱动的Ⅱ型T-S模糊建模方法[J].智能系统学报,2009,4(04):303-308.
 LIAO Qian-fang,LI Ning,LI Shao-yuan.A TypeⅡ TS fuzzy modeling method for datadriven approaches[J].CAAI Transactions on Intelligent Systems,2009,4(04):303-308.
点击复制

一种数据驱动的Ⅱ型T-S模糊建模方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第4卷
期数:
2009年04期
页码:
303-308
栏目:
出版日期:
2009-08-25

文章信息/Info

Title:
A TypeⅡ TS fuzzy modeling method for datadriven approaches
文章编号:
1673-4785(2009)04-0303-06
作者:
廖倩芳李  柠李少远
上海交通大学电子信息与电气工程学院,上海 200240
Author(s):
LIAO Qian-fang LI Ning LI Shao-yuan
chool of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
Ⅱ型模糊TS模糊模型数据驱动pH中和反应过程
Keywords:
TypeⅡ fuzzy TS fuzzy model datadriven pH neutralization process
分类号:
TP273
文献标志码:
A
摘要:
现场采集的数据不可避免地包含一些诸如噪声干扰之类的不确定性,由数据驱动建立的模型需要具备较强的处理不确定因素影响的能力.在以往文献的Ⅰ型TS模糊建模方法的基础上,提出了一种基于数据驱动的Ⅱ型TS模糊建模方法.其过程是通过分析采集的数据样本计算得到不确定因素的影响程度,在Ⅰ型TS模糊模型的基础上,前件参数上采用Ⅱ型的模糊集来代替Ⅰ型的模糊集,后件参数上则采用I型模糊集来代替数值,由此拓展得到Ⅱ型TS模糊模型.最后通过pH中和反应过程对所提出的方法进行仿真验证.仿真结果表明,该方法建立的模型能更好地处理不确定因素的影响,取得更高的准确度.
Abstract:
Data collected from the field inevitably contains uncertainties such as noise or other disturbances; mathematical models established with datadriven approach must possess strong capability to deal with the influence of uncertainties. Following analysis of current methods for typeI TakagiSugeno (TS) fuzzy modeling, a method suitable for typeⅡ TS fuzzy modeling was proposed. In the data driven modeling process, the influence of the degree of uncertainty was determined by analysis of the collected data. On the basis of the typeI fuzzy model, for antecedent parameters, we employed the fuzzy set of the typeⅡ fuzzy model to replace the counterpart from the typeⅠ model . But for consequent parameters, we took typeI fuzzy sets to replace crisp numbers. This produced an improved typeⅡ TS fuzzy model. Finally, a pH neutralization process was taken as an example to verify the proposed mathematical model. Simulation results showed that this method can handle the influence of uncertainties better and achieves higher accuracy.

参考文献/References:

[1]ZADEH L A.The concept of a linguistic variable and its application to approximate reasoningⅠ[J].Information Sciences,1975,8(9):199249.
[2]KARNIK N N,MENDEL J M,LIANG Qilian.TypeⅡ fuzzy logic systems[J].IEEE Transactions on Fuzzy Systems,1999,7(6):643658.
[3]陈 薇,孙增圻.二型模糊系统研究与应用[J].模糊系统与数学,2005,19(1):126135.
 CHEN Wei, SUN Zengqi. Research on type2 fuzzy logic system and its application[J].Fuzzy Systems and Mathmatics,2005,19(1):126135.
 [4]MENDEL J M, ROBERT I J, LIU Feilong. Interval type2 fuzzy logic systems made simple[J].IEEE Transactions on Fuzzy Systems,2006,14(6):808821.
 [5]LIANG Qilian, MENDEL J M. Interval type2 fuzzy logic systems theory and design[J]. IEEE Transactions on Fuzzy Systems, 2000,8(5):535550.
[6]LIANG Qilian, MENDEL J M. An introduction to type2 TSK fuzzy logic systems[C]//Proceedings of IEEE International Conference on Fuzzy Systems. Seoul,Korea, 1999:15341539.
 [7]MéNDEZ G M, CASTILLO O. Interval type2 TSK fuzzy logic systems using hybrid learning algorithm[C]//Proceedings of IEEE International Conference on Fuzzy Systems. Reno, USA, 2005:230235.
 [8]LI Ning, LI Shaoyuan, XI Yugeng. Modeling pH neutralization processes using fuzzy satisfactory clustering[C]//Proceedings of IEEE International Conference on Fuzzy Systems. Melbourne, Australia, 2001:308311.
[9]GUSTAFSON D, KESSEL W C. Fuzzy clustering with a fuzzy covariance matrix[C]//Proc of IEEE CDC. San Diego, 1979:761766.
[10]TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J].IEEE Transactions on Systems, 1985,15(1):116132. 
[11]REN Qun, BARON L, BALAZINSKI M. Type2 TakagiSugenoKang fuzzy logic modeling using subtractive clustering[C]//Fuzzy Information Processing Society (NAFIPS 2006).[S.l.],2006:120125
[12]NIE Junhong, LOH A P, HANG C C. Modeling pH neutralization processes using fuzzyneural approaches[J]. Fuzzy Sets and Systems,1996,78(1):522

备注/Memo

备注/Memo:
收稿日期:2008-10-24.
基金项目:国家自然科学基金资助项目(60604018 );上海自然科学基金资助项目(06ZR14044).
通信作者:李 柠.E-mail: ning_li@sjtu.edu.cn.
作者简介:
廖倩芳,女,1983年生,硕士研究生,主要研究方向为Ⅱ型模糊建模与控制.  
李 柠,女,1974年生,副研究员,硕士生导师,主要研究方向为复杂系统建模与控制、预测控制等. 
李少远,男,1965年生,教授,博士生导师,主要研究方向为预测控制、自适应智能控制等.2000年获得上海市教委“曙光学者”称号,2004年进入教育部新世纪优秀人才支持计划,2006年获得上海市自然科学一等奖(第一完成人),2008年获得国家杰出青年基金.承担了包括国家自然科学基金、国家“863”计划在内的国家级科研项目10余项.在国内外学术杂志上发表学术论文180余篇,其中被SCI和EI检索100余篇.
更新日期/Last Update: 2009-11-16