[1]龚 涛,蔡自兴,江中央,等.免疫机器人的仿生计算与控制[J].智能系统学报,2007,2(05):7-11.
 GONG Tao,CAI Zi-xing,et al.Bioinspired computation and control of immune robots[J].CAAI Transactions on Intelligent Systems,2007,2(05):7-11.
点击复制

免疫机器人的仿生计算与控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年05期
页码:
7-11
栏目:
出版日期:
2007-10-25

文章信息/Info

Title:
Bioinspired computation and control of immune robots
文章编号:
1673-4785(2007)05-0007-05
作者:
龚  涛12蔡自兴1江中央1夏  洁1罗一丹1
1.中南大学 信息科学与工程学院,湖南长沙410083;
2.东华大学信息科学与技术学院,上海201620
Author(s):
GONG Tao1 2CAI Zi-xing1JIANG Zhong-yang1XIA Jie1LUO Yi-d an1
1. School of Information Science and Engineering, Central South University, Cha ngsha 410083, China ;
2. College of Information Science and Technology, Donghua University, Shanghai 201620, China
关键词:
免疫机器人免疫计算免疫控制智能系统
Keywords:
immune robots immune computation immune control in telligent systems
分类号:
TP24
文献标志码:
A
摘要:
传统的移动机器人研究一般假设环境是安全的,为了增强机器人在危险、变化的环境中适应无人作业的能力,提高机器人对外界干扰、攻击和破坏的抵抗力、容错力和免疫力,提出了危险环境的自体/异体建模方法和免疫机器人的仿生计算模型与控制方法.模仿生物免疫系统,构建机器人的免疫计算模型和免疫控制结构,实现类似于生物免疫系统的自体/异体检测、辨别、学习和修复及鲁棒性、免疫性等功能.免疫机器人技术用来检测、识别和预报危险、变化的环境,检测并修复机器人的正常状态,实现恶劣环境中机器人仿生控制,具有重要的理论创新意义、明显的技术创新价值和可观的应用前景.
Abstract:
In traditional study of mobile robots it is assumed that the envir onment is secure and that the robots will neither be attacked, nor fall prey to earthquakes, traps or volcanoes. To enhance adaptability of unmanned robots work ing in dangerous environments, and increase their resistance, fault tolerance an d immunity against outside disturbances, attack and damage, a bioinspired comp u ting model and control method was proposed to create an immune robot. This biolo gical immune system was simulated, an immune computation model and immune contro l architecture for the robots was built, and self/nonself detection, recogniti o n, learning, repair, robustness, and immunity were designed into the biological immune system. These techniques for immune robots can be used to detect, recogni ze and predict dangerous and variational environments, detect the states of the robots and repair them when they are in abnormal states, and carry out bioinsp i red control of robots in extreme environments. These are significant theories wh ich should lead to innovative technology and useful applications.

参考文献/References:

[1]龚 涛. 多维教育免疫艾真体的研究[D]. 长沙:中南大学, 2003.
GONG Tao. Research on multidimension education immune Agent [D]. Changsha: C entral South University, 2003.
[2]BERSINI H, VARELA F. Hints for adaptive problem solving gleaned from immune network [J]. Lecture Notes in Computer Science. 1991, 496: 343-354.
[3]FORREST S, PERELSON A S, ALLEN L, et al. Selfnonself discriminatio n in a computer[A].In Proc of IEEE Symposium on Research in Security and Pri vacy [C].[S.l.],1994.
[4]COOKE D E, HUNT J E. Recognizing promoter sequences using an artific ial immune system[A]. In Proc Intelligent Systems in Molecular Biology[C]. Cambridge, UK, 1995.
[5]DASGUPTA D. Artificial immune system and their applications[M]. B erlin: SpringerVerlag, 1998.
[6]De CASTRO L N, TIMMIS J. Artificial immune systems: a new computatio nal intelligence approach [M]. London: SpringerVerlag, 2002.
[7]BALTHROP J, FORREST S, NEWMAN M E J, et al. Technological networks a nd the spread of computer viruses [J]. Science, 2004, 304(5670): 527-529.
[8]GONG T, CAI Z X. An immune Agent for webbased AI course[J]. Int ernational Journal on ELearning, 2006,5(4):493-506.
[9]JIAO L C, WANG L. Novel genetic algorithm based on immunity [J]. I EEE Trans on Systems, Man and CyberneticsPart A: Systems & Humans, 2000, 30(5) : 552-561.
[10]DING Y S, REN L H. Fuzzy selftuning immune feedback controller fo r tissue hyperthermia [A]. In Proceedings of IEEE Int Conf on Fuzzy Systems [ C]. San Antonio,USA, 2000
[11]HA D, SHIN D, KOH D H, et al. Cost effective embedded DRAM integrat ion for highdensity memory and high performance logic using 015m technolog y node and beyond[J]. IEEE Trans on Electron Devices, 2000, 47(7):1499-1506.
[12]蔡自兴, 龚 涛. 免疫算法研究的进展[J]. 控制与决策, 2004, 19(8): 8 41-846.
CAI Zixing, GONG Tao. Advance in research on immune algorithms [J]. Control an d Decision, 2004, 19(8): 841-846.
[13]GONG T, CAI Z X. Mobile immunerobot model [A]. In Proceedings o f IEEE Int Conf on Robotics, Intelligent Systems and Signal Proceeding [C]. Ch angsha, China, 2003.
[14]陈建安. 免疫系统:模型、算法、网络及应用研究[D]. 西安: 西北工业大学, 2000.
CHEN J A. Immune system: model, algorithm, network and applicaton research [D] . Xi’an: Northwestern Polytechnical University, 2000.
[15]刘 娟,蔡自兴,涂春鸣. 进化机器人学研究进展[J]. 控制理论与应用, 2002, 19(4): 493-499.
 LIU Juan, CAI Zixing, TU Chunming. Survey on evolutionary robotics [J]. Contr ol Theory and Applications, 2002, 19(4): 493-499.
[16]GAO S, ZHAO J, CAI H. Immune genetic algorithm for the path plannin g of tightly coordinated tworobot manipulators [J]. Chinese Journal of Mecha nical Engineering, 2004, 17(4): 481-485.
[17]ISHIGURO A, KUBOSHIKI S, ICHIKAWA S, et al. Gait control of hexapo d walking robots using mutualcoupled immune networks [J]. Advanced Robotics, 1996, 10(2): 179-195.
[18]CAI Z X, DUAN Z H, CAI J F, et al. A multiple particle filters met hod for fault diagnosis of mobile robot deadreckoning system [A]. In Proceed ings of 2005 IEEE/RSJ International Conference on Intelligent Rotots and Systems [C]. Edmonton,Canada, 2005.
[19]CAI Z X, WANG Y. A multiobjective optimization based evolutionary a lgorithm for constrained optimization [J]. IEEE Transactions on Evolutionary C omputation, 2006, 10(6): 658-675.
[20]GONG T, CAI J F, CAI Z X. A coding and control mechanism of natural computation [A]. Proceedings of the 2003 IEEE International Symposium on Inte lligent Control [C]. Houston,USA, 2003.
[21]GONG T, CAI Z X. Natural computation of immune elearning system [A].Proceedings of 3rd International Conference on Computational Intellige nce, Robotics and Autonomous Systems [C]. Singapore, 2005.
[22]CAI Z X. Intelligent control: principles, techniques and applicatio ns [M]. Singapore: World Scientific Publishers, 1997.
[23]CAI Z X, GONG T. Natural computation architecture of immune control based on normal model [A]. Proceedings of 2006 IEEE International Symposium o n Intelligent Control (ISIC) [C]. Munich, Germany, 2006.

相似文献/References:

[1]莫宏伟,左兴权,毕晓君.人工免疫系统研究进展[J].智能系统学报,2009,4(01):21.
 MO Hong-wei,ZUO Xing-quan,BI Xiao-jun.Advances in artificial immune systems[J].CAAI Transactions on Intelligent Systems,2009,4(05):21.

备注/Memo

备注/Memo:
收稿日期:2007-03-30.
基金项目:国家自然科学基金资助项目(60234030,60404021);
国家基础研究发展计划重点资助项目(A1420060159)
作者简介:
龚涛,男,1978年生,博士,讲师,Sigma Xi正式会员,主要研究方向为免疫计算、免疫机器人、人工智能、免疫控制,已发表论文35篇以上,出版著作10余部. E-mail: taogongchina@gmail.com.
蔡自兴,男,1938年生,教授,博士生导师,IEEE高级会员,纽约科学院院士,联合国专家,主要研究方向为人工智能、智能控制和智能机器人,先后获得全国优秀教材一等奖、首届国家级高校教学名师奖、宝钢全国优秀教师特等奖、国家教育部科技进步一等奖等奖励,已发表论文近400篇,出版专著20余部.
江中央,男,1982年生,硕士研究生,主要研究方向为免疫控制、智能控制和嵌入式系统. 
更新日期/Last Update: 2009-05-07