[1]何华灿,何智涛,王 华.论第2次数理逻辑革命[J].智能系统学报,2006,1(01):29-37.
 HE Hua-an,HE Zhi-tao,WANG Hua.On the second revolution of mathematical logic[J].CAAI Transactions on Intelligent Systems,2006,1(01):29-37.
点击复制

论第2次数理逻辑革命(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第1卷
期数:
2006年01期
页码:
29-37
栏目:
出版日期:
2006-03-25

文章信息/Info

Title:
On the second revolution of mathematical logic
文章编号:
1673-4785(2006)01-0029-09
作者:
何华灿1何智涛2王 华1
1.西北工业大学计算机学院,陕西西安710072;2.北京航空航天大学计算机学院,北京100083
Author(s):
HE Hua-an1 HE Zhi-tao2 WANG Hua1
1.School of Computer Science, Northwestern Polytechnical University, Xian 71 0072, China; 2.School of Computer Science, Beihang University, Beijing 100083, China
关键词:
数理逻辑革命柔性逻辑学泛逻辑学不确定性新自然法则
Keywords:
revolution of mathematical logic flexible logics universal logics uncertainty new law of nature
分类号:
TP18
文献标志码:
A
摘要:
人工智能理论危机暴露了经典数理逻辑的局限性,各种非经典数理逻辑的大量涌现表明,第2次数理逻辑革命已经开始.为了使各种逻辑能在统一的泛逻辑学框架内协调一致地发展,为人工智能提供新的逻辑理论基础,提出了第2次数理逻辑革命的总纲领:实现部分辨证逻辑的数学化,建立可包容各种不确定性、矛盾和演化的柔性逻辑学;根据总纲领和逻辑学4要素,提出了革命的若干具体纲领,并指出当前最重要的任务是建立柔性命题逻辑学,它是建立整个柔性逻辑学的基石.根据纲领建立了柔性命题逻辑学,表明它可包容或生成各种命题逻辑.
Abstract:
The theoretical crisis of artificial intelligence exposed the limits of classical mathematical logic. At present, the second revolution of mathematic al logic, which was revealed by the establishment of various nonclassical mathem a tical logics, have begun. In order to make all kinds of logic develop in the uni fi ed universal logics framework and provide the new logic foundation for AI, first ly , the general creed of this revolution was proposed to make some di al ectical logic mathematicalized, and to establish flexible logics which contained v arious uncertainty, contradiction and evolvement; Secondly, regarding the genera l creed and four elements of logic, the concrete creed of the revolution was pr op osed and it was pointed out that the current important task was to establish fle xible propositional logics, which was the footstone of the entire flexible logics. Th e flexible proposition logic, which could contain or generate various proposition logics, had been established regarding the creed.

参考文献/References:

[1]莫绍揆. 数理逻辑概貌[M]. 北京: 科学技术文献出版社,1989.
MO Shaokui. Survey of mathematical logic[M]. Beijing: Scientific and Technical Documents Publishing,1989.
[2]张家龙. 数理逻辑发展史——从莱布尼兹到哥德尔[M]. 北京: 社会科学文献出版社,1993 .
ZHANG Jialong. Phylogeny of mathematical-from Leibnitz to Godel[M ]. Beijing: Social Science Academic Press, 1993.
[3]何华灿, 王     华, 刘永怀,等. 泛逻辑学原理[M]. 北京: 科学出版社, 2001. 
HE Huacan, WANG Hua, LIU Yonghuai, et al. Universal logics principle[M]. Beijing: Scienc e Press, 2001.
[4]王元元. 计算机科学中的逻辑[M]. 北京: 科学出版社, 1989. 
WANG Yuanyuan. Logics in computer science[M]. Beijing: Science Press, 1989.
[5]ZADEH L A. Fuzzy sets[J]. Information and Control, 1965(8): 338-357. 
[6]KEYNES J M. A treatise on probability[M]. London: McMillan, 1921. 
[7]REICHENBACH H. The theory of probability[M]. Berkeley:The University o f California Press, 1949.
[8]罗铸楷, 胡    谋, 陈廷槐. 多值逻辑的理论及应用[M]. 北京: 科学出版社, 1982.
LUO Zhukai, HU Mou, CHEN Tinghuai. Theory and application of multi-valued logic[M]. Beijing: Science Press, 1982.[9]王清印. 灰色数学基础[M]. 武汉: 华中理工大学出版社, 1996.
WANG Qingyin. Basis of grey mathematics[M]. Wuhan: Huazhong Univ ersity of Science and Tech nology Press, 1996.
[10]蔡经球,郭    红. IBARM:一种基于区间表示的不精确推理模型[J]. 计算机科学, 1991, 18(1): 21-24. 
CAI Jingqiu, GUO Hong. IBARM-A uncertain reasoning model b ased on interval representation[J]. Computer Science, 1991, 18(1): 21-24.
[11]刘开第, 吴和琴, 王念鹏,李惠娟. 未确知数学[M]. 武汉: 华中理工大学出版社, 1997. 
LIU Kaidi, WU Heqin, WANG Nianpeng, LI Huijuan. Uncertain mathemati cs[M]. Wuhan: Huazhong University of Science and Technology Press, 1997.
[12]李德毅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995, 32(6): 15 -20. 
LI Deyi. Subjection cloud and subjection cloud generator[J]. Comp uter Research and Development, 1995 32(6): 15-20.
[13]伊利亚,普利高津.确定性的终结——时间、混沌和新自然法则[M]. 湛敏,译. 上海: 上海科技教育出版社,1998.
YILIA, PRIGOGINE I. Termination o f Certainty-Time, chaos and new law of nature[M]. Shanghai: Shanghai Scientifi c and Technological Education Publishing, 1998.
[14]刘增良,刘有才. 模糊逻辑与神经网络——理论研究与探索[M]. 北京: 北京航空航天大学出版社, 1996.
LIU Zengliang, LIU Youcai. Fuzzy logic and NN-theoretical rese arch and exploration[M]. Beijing: BUAA Press, 1996.
[15]石生利,刘叙华. 形式化模糊量词及推理[J]. 软件学报, 1993, 4(3): 8 -14.
SHI Shengli, LIU Xuhua. Formal fuzzy quantifiers and reasoning[J]. Journal of Software, 1993, 4(3): 8-14.
[16]赵沁平. 人工智能中的逻辑[M]. 北京: 北京大学出版社, 1990. 
ZHAO Qinping. Logics for artificial intelligence[M]. Beijin g: Beijing University Press, 1990.
[17]王克宏,胡    篷,石纯一. 情景逻辑与时态逻辑在知识处理中的应用[J]. 计算机科学, 1992, 19(2): 25-27.
WANG Kehong, HU Peng, SHI Chunyi. Application of scen e logic and tense logic in knowledge processing[J]. Computer Scienc e, 1992, 19(2): 25-27.
[18]伊〓波,徐家福. 类比推理综述[J]. 计算机科学, 1991, 18(1): 1-8.
YI Bo, XU Jiafu. Survey of analogism[J]. Computer Science, 1991 , 18(1): 1-8.
[19]李英华,叶天荣,张虹霞. 计算机非传统推理导论[M]. 北京: 宇航出版社, 1992. 
LI Yinghua, YE Tianrong, ZHANG Hongxia. Introduction to computer nontra ditional re asoning[M]. Beijing: Space Navigation Press, 1992.
[20]刘瑞胜,刘叙华. 非单调推理的研究现状[J]. 计算机科学, 1995, 22(4): 14-17. 
LIU Ruisheng, LIU Xuhua. Research status of nonmonotone reasoning[J]. Computer Science, 1995, 22(4): 14-17.
[21]林作铨. 容错推理[J]. 计算机科学, 1993, 20(2): 18-21. 
LIN Zuoquan. Faulttolerance reasoning[J]. Computer Science, 1993, 20(2): 18-21.
[22]林作铨,石纯一. 非单调推理十年进展[J]. 计算机科学, 1990, 17(6): 1 5-31. 
LIN Zuoquan, SHI Chunyi. Progress of nonmonotone reasoning in recent 10 ye ars[J]. Computer Science, 1990, 17(6): 15-31.
[23]李    未. 一个开放的逻辑系统[J]. 中国科学, 1992,A(10):1-6.
LI Wei. An open logical system[J]. Science in China, 1992,A(10):1 -6.
[24]李    未. 开放逻辑——一个刻画知识增长和更新的逻辑理论[J]. 计算机科学 , 1992, 19(4):1-8. 
LI Wei. Open logic—a logical theory describing knowledge increas ing and updating[J]. Computer Science, 1992, 19(4): 1-8.
[25]POOLE D. 缺席推理的逻辑框架[J]. 计算机科学, 1991, 18(3): 57-65.
POOLE D. Logical framework of absent reasoning[J]. Computer Sci ence, 1991, 18(3): 57-65.
[26]周生炳,戴汝为. 基于标记逻辑的非单调推理[J]. 计算机学报, 1995, 18 : 641-656. 
ZHOU Shengbing, DAI Ruwei. Nonmonotone reasoning based on mark logic[ J]. Computer Transaction, 1995, 18: 641-656.
[27]金    芝,胡守仁. 限制推理及其应用[J].计算机科学, 1990, 17(6): 42 -46.
JIN Zhi, HU Shouren. Restriction reasoning and application[J]. Computer Science, 1990, 17(6): 42-46.
[28]贲可荣, 王    戟,陈火旺. 关于不完全,不确定信息推理的基础探讨[J]. 计算机科学, 1993, 21(3): 1-6.
BEN Kerong, WANG Ji, CHEN Huowang. Fundamental discussion on incomplete and uncertain information reasoning[J]. Computer Science, 1993, 21(3): 1-6.
[29]中国科学院《复杂性研究》编委会. 复杂性研究[M]. 北京: 科学出版社, 1993. 
Chi na Academy of Sciences, Committee of Editor of research on complexity. Research on complexity[M]. Beijing: Science Press, 1993.
[30]苗东升. 模糊学导引[M]. 北京:中国人民大学出版社, 1987.
MIAO Dongsheng. Guide to fuzzy theory[M]. Beijing: China Renmin University Press, 1987.
[31]GABBAY D M, GUENTHNER F. Handbook of philosophical logic:2nd ed[ M]. Dordrecht : Kluwer Academic Publishers,2001-2004
[32]B ZIAU J Y. From paraconsistent logic to universal logic [J]. Sorites, 2001, 12(5):5-32.

备注/Memo

备注/Memo:
收稿日期:2006-02-02.
基金项目:国家自然科学基金资助项目(60273087,60373016);国家高技术研究发展计划项目(863计划,2002AA412020,2004AA113030);北京市自然科学基金资助项目(4032009 ).
作者简介:
何华灿,男,1938年生,教授、博士生导师,主要研究方向为人工智能基础及应用、泛逻辑学.参与发起成立中国人工智能学会,先后任常务理事、副理事长.人工智能基础专业委员会主任. 主持国家自然科学基金、省部级基金项目共13项,已发表论文130余篇.
何智涛,男,1972年生,工程师,硕士,毕业于北京航空航天大学,主要研究方向为计算机软件测试、信息理论、泛逻辑学.参加国家自然科学基金项目2项、863项目1项,已发表论文5篇.
王    华,女,1976年生,毕业于西北工业大学,主要研究方向为人工智能及应用、泛逻辑学.参加国家自然科学基金项目1项、省部级基金项目1项、863 项目1项,已发表论文6篇,参加编写专著《泛逻辑学原理》.
更新日期/Last Update: 2009-04-07