[1]陈德旺,王蕊,孔令坤,等.基于模糊系统的第三代人工智能[J].智能系统学报,2025,20(5):1071-1081.[doi:10.11992/tis.202407011]
 CHEN Dewang,WANG Rui,KONG Lingkun,et al.Third-generation artificial intelligence based on fuzzy systems[J].CAAI Transactions on Intelligent Systems,2025,20(5):1071-1081.[doi:10.11992/tis.202407011]
点击复制

基于模糊系统的第三代人工智能

参考文献/References:
[1] 郑南宁. 人工智能新时代[J]. 智能科学与技术学报, 2019(1): 1-3.
ZHENG Nanning. The new era of artificial intelligence[J]. Chinese journal of intelligent science and technology, 2019(1): 1-3.
[2] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3): 338-353.
[3] WANG Lixin. Fuzzy systems are universal approximators[C]//IEEE International Conference on Fuzzy Systems. San Diego: IEEE, 1992: 1163-1170.
[4] KOSKO B. Fuzzy systems as universal approximators[J]. IEEE transactions on computers, 1994, 43(11): 1329-1333.
[5] 刘慧林, 冯汝鹏, 胡瑞栋, 等. 模糊系统作为通用逼近器的10年历程[J]. 控制与决策, 2004, 19(4): 367-371.
LIU Huilin, FENG Rupeng, HU Ruidong, et al. Decennary development of fuzzy systems as universal approximators[J]. Control and decision, 2004, 19(4): 367-371.
[6] CASTRO J L. Fuzzy logic controllers are universal approximators[J]. IEEE transactions on systems, man, and cybernetics, 1995, 25(4): 629-635.
[7] JANG J R, SUN C T. Functional equivalence between radial basis function networks and fuzzy inference systems[J]. IEEE transactions on neural networks, 1993, 4(1): 156-159.
[8] PARK J, SANDBERG I W. Universal approximation using radial-basis-function networks[J]. Neural computation, 1991, 3(2): 246-257.
[9] ZENG Xiaojun, SINGH M G. Approximation theory of fuzzy systems-MIMO case[J]. IEEE transactions on fuzzy systems, 1995, 3(2): 219-235.
[10] 陈德旺, 蔡际杰, 黄允浒. 面向可解释性人工智能与大数据的模糊系统发展展望[J]. 智能科学与技术学报, 2019, 1(4): 327-334.
CHEN Dewang, CAI Jijie, HUANG Y (H /X). Development prospect of fuzzy system oriented to interpretable artificial intelligence and big data[J]. Chinese journal of intelligent science and technology, 2019, 1(4): 327-334.
[11] FERNANDEZ A, HERRERA F, CORDON O, et al. Evolutionary fuzzy systems for explainable artificial intelligence: why, when, what for, and where to?[J]. IEEE computational intelligence magazine, 2019, 14(1): 69-81.
[12] CAO Jin, ZHOU Ta, ZHI Shaohua, et al. Fuzzy inference system with interpretable fuzzy rules: advancing explainable artificial intelligence for disease diagnosis: a comprehensive review[J]. Information sciences, 2024, 662: 120212.
[13] 刘福才, 陈超, 邵慧, 等. 模糊系统万能逼近理论研究综述[J]. 智能系统学报, 2007, 2(1): 25-34.
LIU Fucai, CHEN Chao, SHAO Hui, et al. Researches for universal approximation of fuzzy systems: a survey[J]. CAAI transactions on intelligent systems, 2007, 2(1): 25-34.
[14] SUN Changle, LI Haitao. Construction of universal approximators for multi-input single-output hierarchical fuzzy systems[J]. IEEE transactions on fuzzy systems, 2023, 31(12): 4170-4179.
[15] 游文虎, 王茂, 施佳. PIE+MOM的Mamdani模糊系统通用逼近性充要条件[J]. 哈尔滨工业大学学报, 2014, 46(11): 1-7.
YOU Wenhu, WANG Mao, SHI Jia. Sufficient and necessary condition of Mamdani fuzzy systems with PIE and MOM as universal approximators[J]. Journal of Harbin Institute of Technology, 2014, 46(11): 1-7.
[16] 王宁, 谭跃, 王丹, 等. 一般齐次T-S模糊系统的逼近性能[J]. 智能系统学报, 2010, 5(5): 436-442.
WANG Ning, TAN Yue, WANG Dan, et al. Study on approximation capabilities of general homogenous T-S fuzzy systems[J]. CAAI transactions on intelligent systems, 2010, 5(5): 436-442.
[17] SHEN Hanhan, PAN Xiaodong, PENG Xiaoyu, et al. A new type of fuzzy systems in terms of vague partitions[J]. Journal of intelligent & fuzzy systems, 2023, 44(6): 9545-9563.
[18] ZENG Xiaojun, SINGH M G. Approximation accuracy analysis of fuzzy systems as function approximators[J]. IEEE transactions on fuzzy systems, 1996, 4(1): 44-63.
[19] ZENG Xiaojun, SINGH M G. A relationship between membership functions and approximation accuracy in fuzzy systems[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 1996, 26(1): 176-180.
[20] WANG Lixin, WEI Chen. Approximation accuracy of some neuro-fuzzy approaches[J]. IEEE transactions on fuzzy systems, 2000, 8(4): 470-478.
[21] YAN Wen, ZHAO Tao, GONG Xin. An explicit-time and explicit-accuracy control for a state-constrained nonstrict-feedback uncertain system based on adaptive fuzzy dynamic-approximation[J]. Journal of the franklin institute, 2023, 360(9): 6425-6462.
[22] RAJA P, AGHILI-ASHTIANI A. G-normal fuzzy relational models are universal approximators[J]. Fuzzy sets and systems, 2023, 471: 108682.
[23] TAO Yujie, SUO Chunfeng, WANG Guijun. Approximation factor of the piecewise linear functions in Mamdani fuzzy system and its realization process[J]. Journal of intelligent & fuzzy systems, 2021, 41(6): 6859-6873.
[24] 李峰, 王琦, 胡健雄, 等. 数据与知识联合驱动方法研究进展及其在电力系统中应用展望[J]. 中国电机工程学报, 2021, 41(13): 4377-4389.
LI Feng, WANG Qi, HU Jianxiong, et al. Combined data-driven and knowledge-driven methodology research advances and its applied prospect in power systems[J]. Proceedings of the CSEE, 2021, 41(13): 4377-4389.
[25] 王飞跃, 缪青海. 人工智能驱动的科学研究新范式: 从AI4S到智能科学[J]. 中国科学院院刊, 2023, 38(4): 536-540.
WANG Feiyue, MIAO Qinghai. Bulletin of Chinese academy of sciences, 2023, 38(4): 536-540.
[26] ZHENG Ying, CHEN Haoyu, DUAN Qingyang, et al. Leveraging domain knowledge for robust deep reinforcement learning in networking[C]//IEEE Conference on Computer Communications. Vancouver: IEEE, 2021: 1-10.
[27] 金哲, 张引, 吴飞, 等. 数据驱动与知识引导结合下人工智能算法模型[J]. 电子与信息学报, 2023, 45(7): 2580-2594.
JIN Zhe, ZHANG Yin, WU Fei, et al. Artificial intelligence algorithms based on data-driven and knowledge-guided models[J]. Journal of electronics & information technology, 2023, 45(7): 2580-2594.
[28] 万超. 知识驱动与数据驱动系统构建综述[J]. 长江信息通信, 2021(4): 145-147.
WAN Chao. Summary of knowledge-driven and data-driven system construction[J]. Changjiang information & communications, 2021(4): 145-147.
[29] XIE Xiaozheng, NIU Jianwei, LIU Xuefeng, et al. A survey on incorporating domain knowledge into deep learning for medical image analysis[J]. Medical image analysis, 2021, 69: 101985.
[30] 杨浩, 王佳怡, 易文飞, 等. 知识–数据融合驱动的配电网光伏逆变器 电压/无功优化自适应控制[J/OL]. 中国电机工程学报. https://doi.org/10.13334/j.0258-8013.pcsee.241838.
YANG Hao , WANG Jiayi , YI Wenfei, et al. Hybrid knowledge-data driven adaptive voltage/var optimization control of photovoltaic inverters in distribution networks[J/OL]. Proceedings of the CSEE. https://doi.org/10.13334/j.0258-8013.pcsee.241838.
[31] 张钹, 朱军, 苏航. 迈向第三代人工智能[J]. 中国科学(信息科学), 2020, 50(9): 1281-1302.
ZHANG Bo, ZHU Jun, SU Hang. Toward the third generation of artificial intelligence[J]. Scientia sinica (informationis), 2020, 50(9): 1281-1302.
[32] NURMINEN J K, KARONEN O, H?T?NEN K. What makes expert systems survive over 10 years: empirical evaluation of several engineering applications[J]. Expert systems with applications, 2003, 24(2): 199-211.
[33] KANDEL A. Fuzzy expert systems[M]. Boca Raton: CRC press, 1991.
[34] ROBINSON J A. A machine-oriented logic based on the resolution principle[J]. Journal of the ACM, 1965, 12(1): 23-41.
[35] ESLAMI E, BUCKLEY J J. Inverse approximate reasoning[J]. Fuzzy sets and systems, 1997, 87(2): 155-158.
[36] JANG J R. ANFIS: adaptive-network-based fuzzy inference system[J]. IEEE transactions on systems, man, and cybernetics, 1993, 23(3): 665-685.
[37] CORDON O, HERRERA F, GOMIDE F, et al. Ten years of genetic fuzzy systems: current framework and new trends[C]//Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Vancouver: IEEE, 2001: 1241-1246.
[38] 孙富春, 罗敏楠. 模糊系统建模综述[J]. 杭州电子科技大学学报, 2015, 35(5): 1-6.
SUN Fuchun, LUO Minnan. A review of fuzzy system modeling[J]. Journal of Hangzhou Dianzi University, 2015, 35(5): 1-6.
[39] JAKUBEK S, HAMETNER C, KEUTH N. Total least squares in fuzzy system identification: an application to an industrial engine[J]. Engineering applications of artificial intelligence, 2008, 21(8): 1277-1288.
[40] YEN J, WANG L. Simplifying fuzzy rule-based models using orthogonal transformation methods[J]. IEEE transactions on systems, man, and cybernetics Part B, Cybernetics, 1999, 29(1): 13-24.
[41] CORDON O, HERRERA F, DEL JESUS M J, et al. A multiobjective genetic algorithm for feature selection and granularity learning in fuzzy-rule based classification systems[C]//Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Vancouver: IEEE, 2002: 1253-1258.
[42] ISHIBUCHI H, YAMAMOTO T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining[J]. Fuzzy sets and systems, 2004, 141(1): 59-88.
相似文献/References:
[1]孙富春,杨 晋,刘华平.SISO Mamdani模糊系统作为函数逼近器的必要条件[J].智能系统学报,2009,4(4):288.
 SUN Fu-chun,YANG Jin,LIU Hua-ping.Preconditions for SISO Mamdani fuzzy systems to perform as function approximators[J].CAAI Transactions on Intelligent Systems,2009,4():288.
[2]蒋云良,印泽宗,张雄涛,等.高阶Takagi-Sugeno-Kang模糊知识蒸馏分类器及其在脑电信号分类中的应用[J].智能系统学报,2024,19(6):1419.[doi:10.11992/tis.202307029]
 JIANG Yunliang,YIN Zezong,ZHANG Xiongtao,et al.TSK fuzzy distillation classifier with negative Euclidean probability and High-order fuzzy dark knowledge transfer and its application on EEG signals classification[J].CAAI Transactions on Intelligent Systems,2024,19():1419.[doi:10.11992/tis.202307029]
[3]张雄涛,陈天宇,赵康,等.基于多教师自适应知识蒸馏的TSK模糊分类器[J].智能系统学报,2025,20(5):1136.[doi:10.11992/tis.202410028]
 ZHANG Xiongtao,CHEN Tianyu,ZHAO Kang,et al.TSK fuzzy classifier based on multi-teacher adaptive knowledge distillation[J].CAAI Transactions on Intelligent Systems,2025,20():1136.[doi:10.11992/tis.202410028]

备注/Memo

收稿日期:2024-7-8。
基金项目:福建省第三批创新之星人才计划项目 (003002);福建省财政厅教育科研专项资金项目 (GY-Z21001);福建理工大学科研基金项目 (GY-Z22071).
作者简介:陈德旺,教授,博士,电气电子工程师学会(IEEE) 高级会员、中国自动化学会高级会员,主要研究方向为人工智能算法、模糊系统和智能交通系统。发表学术论文200余篇,出版学术专著4部,出版科普专著2部。E-mail:dwchen@fjut.edu.cn。;王蕊,硕士研究生,主要研究方向为模糊系统、列车运行时刻表优化。E-mail:wangrui175@163.com。;孔令坤,博士研究生,主要研究方向为柔性生产线控制与通信优化。E-mail:klk@126.com。
通讯作者:陈德旺. E-mail:dwchen@fjut.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com