[1]陈德旺,王蕊,孔令坤,等.基于模糊系统的第三代人工智能[J].智能系统学报,2025,20(5):1071-1081.[doi:10.11992/tis.202407011]
CHEN Dewang,WANG Rui,KONG Lingkun,et al.Third-generation artificial intelligence based on fuzzy systems[J].CAAI Transactions on Intelligent Systems,2025,20(5):1071-1081.[doi:10.11992/tis.202407011]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第5期
页码:
1071-1081
栏目:
综述
出版日期:
2025-09-05
- Title:
-
Third-generation artificial intelligence based on fuzzy systems
- 作者:
-
陈德旺1, 王蕊1, 孔令坤2, 韩泽明1
-
1. 福建理工大学 交通运输学院, 福建 福州 350118;
2. 福州大学 电气工程与自动化学院, 福建 福州 350108
- Author(s):
-
CHEN Dewang1, WANG Rui1, KONG Lingkun2, HAN Zeming1
-
1. School of Transportation, Fujian University of Technology, Fuzhou 350118, China;
2. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
-
- 关键词:
-
第三代人工智能; 模糊系统; 三空间融合模型; 知识驱动; 数据驱动; 通用逼近性; 模糊专家系统; 数据驱动的模糊系统辨识
- Keywords:
-
third-generation artificial intelligence; fuzzy systems; three-space fusion model; knowledge-driven; data-driven; universal approximation; fuzzy expert systems; data-driven fuzzy system identification
- 分类号:
-
TP39
- DOI:
-
10.11992/tis.202407011
- 摘要:
-
人工智能经历了第一代人工智能和第二代人工智能2个发展阶段,2个阶段的人工智能分别运用以控制逻辑为核心的知识驱动和以数据学习为核心的数据驱动建构算法系统,以模拟人类的生物智能。2种路径各有优势,但存在算力有限和可解释性缺陷等缺点,第三代人工智能理论与方法正致力于发展抗噪、鲁棒且可解释的人工智能。为实现这一目标,详细讨论了基于知识驱动和数据驱动相融合的第三代人工智能的建模方法,并在此第三代人工智能的基础上,探讨将模糊系统与第三代人工智能相结合,充分利用模糊系统鲁棒性与可解释性强的优势,推动第三代人工智能的发展,希望对未来第三代人工智能发展具有一定借鉴意义。
- Abstract:
-
Artificial Intelligence (AI) has undergone two stages of development. The first-generation AI relied on knowledge-driven algorithmic systems focused on control logic, while the second-generation AI shifted toward data-driven systems emphasizing data learning to simulate the biological intelligence of human beings. Both approaches have their strengths. However, they face limitations such as limited computational power and issues with interpretability. To address these shortcomings, third-generation AI theories and methodologies aim to develop systems that are noise-resistant, robust, and interpretable. This paper discusses the modeling methods for third-generation AI, which are based on integrating knowledge-driven and data-driven approaches. It also examines the potential of combining third-generation AI with fuzzy systems. By leveraging the robust and interpretable characteristics of fuzzy systems, the advancement of third-generation AI can be further accelerated. The insights presented offer a valuable reference for shaping the future development of third-generation AI.
备注/Memo
收稿日期:2024-7-8。
基金项目:福建省第三批创新之星人才计划项目 (003002);福建省财政厅教育科研专项资金项目 (GY-Z21001);福建理工大学科研基金项目 (GY-Z22071).
作者简介:陈德旺,教授,博士,电气电子工程师学会(IEEE) 高级会员、中国自动化学会高级会员,主要研究方向为人工智能算法、模糊系统和智能交通系统。发表学术论文200余篇,出版学术专著4部,出版科普专著2部。E-mail:dwchen@fjut.edu.cn。;王蕊,硕士研究生,主要研究方向为模糊系统、列车运行时刻表优化。E-mail:wangrui175@163.com。;孔令坤,博士研究生,主要研究方向为柔性生产线控制与通信优化。E-mail:klk@126.com。
通讯作者:陈德旺. E-mail:dwchen@fjut.edu.cn
更新日期/Last Update:
2025-09-05