[1]向宏程,邓亦敏,段海滨.基于探索群策略鸽群优化的高超声速飞行器飞/发一体化控制[J].智能系统学报,2022,17(4):849-855.[doi:10.11992/tis.202205033]
 XIANG Hongcheng,DENG Yimin,DUAN Haibin.Integrated control of hypersonic aerial vehicle and engine system based on exploring swarm strategy based pigeon inspired optimization[J].CAAI Transactions on Intelligent Systems,2022,17(4):849-855.[doi:10.11992/tis.202205033]
点击复制

基于探索群策略鸽群优化的高超声速飞行器飞/发一体化控制

参考文献/References:
[1] DING Yibo, WANG Xiaogang, BAI Yuliang, et al. An improved continuous sliding mode controller for flexible air-breathing hypersonic vehicle[J]. International journal of robust and nonlinear control, 2020, 30(14): 5751–5772.
[2] WANG Le, QI Ruiyun, JIANG Bin. Adaptive actuator fault-tolerant control for non-minimum phase air-breathing hypersonic vehicle model[J]. ISA transactions, 2022, 126: 47–64.
[3] 王曉鶴. 高超声速武器改变世界军事力量格局[J]. 航空动力, 2022(2): 17–20
[4] 王冠, 尹童, 曹颖. 国外高超声速武器攻防发展态势研究[J]. 现代防御技术, 2022, 50(2): 26–32
WANG Guan, YIN Tong, CAO Ying. Research on the development of foreign hypersonic offensive and defensive weapons[J]. Modern defence technology, 2022, 50(2): 26–32
[5] 李宏新, 谢业平. 从航空发动机视角看飞/发一体化问题[J]. 航空发动机, 2019, 45(6): 1–8
LI Hongxin, XIE Yeping. Fundamental issues of aircraft/engine integration from the perspective of aeroengine[J]. Aeroengine, 2019, 45(6): 1–8
[6] 季春生. 飞发一体化控制先进技术发展分析[J]. 航空动力, 2019(4): 32–38
JI Chunsheng. Analysis to the development of advanced technology for integrated flight-propulsion control[J]. Aerospace power, 2019(4): 32–38
[7] 李俊, 杨水锋, 但聃. 未来飞机对飞发一体化技术的需求[J]. 航空动力, 2018(2): 63–66
LI Jun, YANG Shuifeng, DAN Dan. Integrated aircraft/engine technology required by future aircraft[J]. Aerospace power, 2018(2): 63–66
[8] VEERAN S, PESYRIDIS A, GANIPPA L. Ramjet compression system for a hypersonic air transportation vehicle combined cycle engine[J]. Energies, 2018, 11(10): 2558.
[9] CHENG Kunlin, QIN Jiang, SUN Hongchuang, et al. Performance assessment of a closed-recuperative-Brayton-cycle based integrated system for power generation and engine cooling of hypersonic vehicle[J]. Aerospace science and technology, 2019, 87: 278–288.
[10] YAO Zhiheng, BAO Wen, CHANG Juntao, et al. Modelling for couplings of an airframe—propulsion integrated hypersonic vehicle with engine safety boundaries[J]. Proceedings of the institution of mechanical engineers, part G:journal of aerospace engineering, 2010, 224(1): 43–55.
[11] 冯云山, 杨照华. 模糊自适应的高超飞行器控制与干扰[J]. 智能系统学报, 2012, 7(2): 129–134
FENG Yunshan, YANG Zhaohua. Control and disturbance analysis of hypersonic vehicles based on fuzzy adaptive[J]. CAAI transactions on intelligent systems, 2012, 7(2): 129–134
[12] 林鹏, 左林玄, 王霄, 等. 未来作战飞机飞发一体化技术的思考[J]. 航空动力, 2018(2): 52–57
LIN Peng, ZUO Linxuan, WANG Xiao, et al. Discussion on aircraft/engine integration technology of future combat aircraft[J]. Aerospace power, 2018(2): 52–57
[13] DUAN Haibin, QIU Huaxin. Advancements in pigeon-inspired optimization and its variants[J]. Science China information sciences, 2019, 62(7): 1–10.
[14] DUAN Haibin, QIAO Peixin. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. International journal of intelligent computing and cybernetics, 2014, 7(1): 24–37.
[15] SUN Xiaoxue, PAN J S, CHU Shuchuan, et al. A novel pigeon-inspired optimization with QUasi-Affine TRansformation evolutionary algorithm for DV-Hop in wireless sensor networks[J]. International journal of distributed sensor networks, 2020, 16(6): 1–15.
[16] TIAN Aiqing, CHU Shuchuan, PAN J S, et al. A compact pigeon-inspired optimization for maximum short-term generation mode in cascade hydroelectric power station[J]. Sustainability, 2020, 12(3): 767.
[17] WANG Bohang, WANG Daobo, ALI Z A. A Cauchy mutant pigeon-inspired optimization–based multi-unmanned aerial vehicle path planning method[J]. Measurement and control, 2020, 53(1/2): 83–92.
[18] YE Linqi, ZONG Qun, ZHANG Xiuyun. Adaptive control for a non-minimum phase hypersonic vehicle model[C]//2015 34th Chinese Control Conference. Hangzhou: IEEE, 2015: 991-996.
[19] LUCASBPRO Lucas Braga, Aircraft engine modeling[EB/OL]. (2020?07?16)[2022?05?20]. https: //github. com/lucasbpro/aircraft-engine-modeling.
[20] RAO C S, SANTOSH S, V D R. Tuning optimal PID controllers for open loop unstable first order plus time delay systems by minimizing ITAE criterion[J]. IFAC-papers online, 2020, 53(1): 123–128.
相似文献/References:
[1]冯云山,杨照华.模糊自适应的高超飞行器控制与干扰[J].智能系统学报,2012,7(2):129.
 FENG Yunshan,YANG Zhaohua.Control and disturbance analysis of hypersonic vehicles based on fuzzy adaptive[J].CAAI Transactions on Intelligent Systems,2012,7():129.

备注/Memo

收稿日期:2022-05-20。
基金项目:国家自然科学基金项目(U20B2071, U19B2033)
作者简介:向宏程,硕士研究生,主要研究方向为群体智能、高超声速飞行器智能自主飞行控制;邓亦敏,副研究员,主要研究方向为仿生智能感知、无人系统仿生自主飞行控制;段海滨,教授,博士生导师,主要研究方向为无人机自主控制、计算机仿生视觉与智能感知、仿生智能计算理论及应用,曾获吴文俊人工智能科技创新一等奖等,主持国家自然基金重大研究计划重点项目、重点项目等7项。发表学术论文80余篇,出版 专著4部。
通讯作者:段海滨. E-mail:hbduan@buaa.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com