[1]苗北辰,郭为安,汪镭.隐式特征和循环神经网络的多声部音乐生成系统[J].智能系统学报,2019,14(1):158-164.[doi:10.11992/tis.201804009]
 MIAO Beichen,GUO Weian,WANG Lei.A polyphony music generation system based on latent features and a recurrent neural network[J].CAAI Transactions on Intelligent Systems,2019,14(1):158-164.[doi:10.11992/tis.201804009]
点击复制

隐式特征和循环神经网络的多声部音乐生成系统

参考文献/References:
[1] ECK D, SCHMIDHUBER J. A first look at music composition using LSTM recurrent neural networks. Technical Report No. IDSIA-07-02[R]. Manno, Switzerland:Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 2002:1-11.
[2] STURM B L, SANTOS J F, BENTAL O, et al. Music transcription modelling and composition using deep learning[EB/OL]. (2016-04-29)[2018-03-23]. https://arxiv.org/abs/1604.08723.
[3] CHOI K, FAZEKAS G, SANDLER M. Text-based LSTM networks for Automatic Music Composition[EB/OL].(2016-04-18)[2018-03-23].https://arxiv.org/abs/1604.05358.
[4] 王程, 周婉, 何军. 面向自动音乐生成的深度递归神经网络方法[J]. 小型微型计算机系统, 2017, 38(10):2412-2416 WANG Cheng, ZHOU Wan, HE Jun. Recurrent neural network method for automatic generation of music[J]. Journal of Chinese computer systems, 2017, 38(10):2412-2416
[5] LACKNER K. Composing a melody with long-short term memory (LSTM) recurrent neural networks[D]. Munich, Germany:Technische Universit?t München, 2016.
[6] CHU H, URTASUN R, FILDER S. Song from PI:a musically plausible network for Pop music generation[EB/OL].(2016-11-10)[2018-03-23].https://arxiv.org/abs/1611.03477.
[7] MAKRIS D, KALIAKATSOS-PAPAKOSTAS M, KARYDIS I, et al. Combining LSTM and feed forward neural networks for conditional rhythm composition[C]//18th International Conference on Engineering Applications of Neural Networks. Athens, Greece, 2017:570-582.
[8] OORD A V D, DIELEMAN S, ZEN H, et al. WaveNet:a generative model for raw audio[EB/OL].(2016-09-19)[2018-03-23].https://arxiv.org/abs/1609.03499.
[9] MOGREN O. C-RNN-GAN:continuous recurrent neural networks with adversarial training[C]//Constructive Machine Learning Workshop (NIPS 2016). Barcelona, Spain, 2016:1-6.
[10] SHEN Yan, XIE Meiping. Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network[J]. Journal of marine science and application, 2005, 4(2):56-60.
[11] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.

备注/Memo

收稿日期:2018-04-08。
基金项目:国家自然科学基金项目(71771176,61503287).
作者简介:苗北辰,男,1994年生,硕士研究生,主要研究方向为音乐生成的自动化;郭为安,男,1985生,副教授,博士,IEEE会员,主要研究方向为人工智能理论和应用。作为独立PI主持的项目包括国家自然科学基金青年基金、面上基金、上海市科学技术委员会等国家级和省部级项目。发表学术论文20余篇,被SCI检索10篇;汪镭,男,1970年生,教授,博士生导师,主要研究方向为群体智能、并行实现技术。发表学术论文90余篇,出版专著4部。
通讯作者:苗北辰.E-mail:m1104193501@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com