[1]赵杰,蔡成涛,乔人杰.未知扰动下的无人水面艇有限时间动态预设性能控制[J].智能系统学报,2023,18(4):849-857.[doi:10.11992/tis.202209031]
 ZHAO Jie,CAI Chengtao,QIAO Renjie.Finite-time dynamic prescribed performance control for surface unmanned vehicles with unknow disturbances[J].CAAI Transactions on Intelligent Systems,2023,18(4):849-857.[doi:10.11992/tis.202209031]
点击复制

未知扰动下的无人水面艇有限时间动态预设性能控制

参考文献/References:
[1] ZHENG Zewei, RUAN Linping, ZHU Ming. Output-constrained tracking control of an underactuated autonomous underwater vehicle with uncertainties[J]. Ocean engineering, 2019, 175: 241–250.
[2] ZHENG Zewei, HUANG Yanting, XIE Lihua, et al. Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output[J]. IEEE transactions on control systems technology, 2018, 26(5): 1851–1859.
[3] FOSSEN T I. Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. Trondheim[M]. Norway: Marine Cybernetics AS, 2002.
[4] LIAO Yulei, WAN Lei, ZHUANG Jiayuan. Backstepping dynamical sliding mode control method for the path following of the underactuated surface vessel[J]. Procedia engineering, 2011, 15: 256–263.
[5] WEN Guoxing, GE S S, CHEN C L P, et al. Adaptive tracking control of surface vessel using optimized backstepping technique[J]. IEEE transactions on cybernetics, 2019, 49(9): 3420–3431.
[6] LIANG Kun, LIN Xiaogong, CHEN Yu, et al. Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation[J]. Ocean engineering, 2020, 206: 107245.
[7] SUN Yizhuo, GAO Yabin, ZHAO Yue, et al. Neural network-based tracking control of uncertain robotic systems: predefined-time nonsingular terminal sliding-mode approach[J]. IEEE transactions on industrial electronics, 2022, 69(10): 10510–10520.
[8] 杨迪, 郭晨, 朱玉华, 等. 欠驱动船舶神经网络自适应路径跟踪控制[J]. 智能系统学报, 2018, 13(2): 254–260
YANG Di, GUO Chen, ZHU Yuhua, et al. Neural network adaptive path tracking control for underactuated ships[J]. CAAI transactions on intelligent systems, 2018, 13(2): 254–260
[9] 秦贝贝, 陈增强, 孙明玮, 等. 基于自适应神经模糊推理系统的船舶航向自抗扰控制[J]. 智能系统学报, 2020, 15(2): 255–263
QIN Beibei, CHEN Zengqiang, SUN Mingwei, et al. Active disturbance rejection control of ship course based on adaptive-network-based fuzzy inference system[J]. CAAI transactions on intelligent systems, 2020, 15(2): 255–263
[10] ZHENG Huarong, WU Jun, WU Weimin. Robust dynamic positioning of autonomous surface vessels with tube-based model predictive control[J]. Ocean engineering, 2020, 199: 106820.
[11] VEKSLER A, JOHANSEN T A, BORRELLI F, et al. Dynamic positioning with model predictive control[J]. IEEE transactions on control systems technology, 2016, 24(4): 1340–1353.
[12] ZHU Guibing, MA Yong, LI Zhixiong, et al. Adaptive neural output feedback control for MSVs with predefined performance[J]. IEEE transactions on vehicular technology, 2021, 70(4): 2994–3006.
[13] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE transactions on automatic control, 2008, 53(9): 2090–2099.
[14] HAN S I, LEE J M. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems[J]. ISA transactions, 2014, 53(1): 33–43.
[15] DAI Shilu, HE Shude, WANG Min, et al. Adaptive neural control of underactuated surface vessels with prescribed performance guarantees[J]. IEEE transactions on neural networks and learning systems, 2019, 30(12): 3686–3698.
[16] NA Jing, WANG Shubo, LIU Yanjun, et al. Finite-time convergence adaptive neural network control for nonlinear servo systems[J]. IEEE transactions on cybernetics, 2020, 50(6): 2568–2579.
[17] WANG Yuanhui, WANG Haibin, LI Mingyang. Adaptive fuzzy controller design for dynamic positioning ship integrating prescribed performance[J]. Ocean engineering, 2021, 219: 107956.
[18] LI Jian, DU Jialu, CHEN C L P. Command-filtered robust adaptive NN control with the prescribed performance for the 3-D trajectory tracking of underactuated AUVs[J]. IEEE transactions on neural networks and learning systems, 2022, 33(11): 6545–6557.
[19] JIANG Xiyun, WANG Yuanhui. Prescribed performance control of marine surface vessel trajectory tracking in finite-time with full-state constraints and input saturation[J]. Journal of marine science and engineering, 2021, 9(8): 866.
[20] YAO Qijia. Adaptive finite-time sliding mode control design for finite-time fault-tolerant trajectory tracking of marine vehicles with input saturation[J]. Journal of the franklin institute, 2020, 357(18): 13593–13619.
[21] WANG Junxiao, RONG Jiayi, Yu Li. Dynamic prescribed performance sliding mode control for DC-DC buck converter system with mismatched time-varying disturbances[J]. ISA transactions, 2022, 129: 546–557.
[22] WANG Ning, ZHU Zhongben, QIN Hongde, et al. Finite-time extended state observer-based exact tracking control of an unmanned surface vehicle[J]. International journal of robust and nonlinear control, 2021, 31(5): 1704–1719.
[23] ZHU Guibing, DU Jialu. Global robust adaptive trajectory tracking control for surface ships under input saturation[J]. IEEE journal of oceanic engineering, 2020, 45(2): 442–450.
[24] DU Jialu, HU xin, KRSTI M. Robust dynamic positioning of ships with disturbances under input saturation[J]. Automatica, 2016, 73: 207–214.
[25] WANG Taiqi, LIU Yongtao, ZHANG Xinfeng. Extended state observer-based fixed-time trajectory tracking control of autonomous surface vessels with uncertainties and output constraints[J]. ISA transactions, 2022, 128: 174–183.
[26] LIN Zhi, DU WANG Hongdu, KARKOUB M, et al. Prescribed performance based sliding mode path-following control of UVMS with flexible joints using extended state observer based sliding mode disturbance observer[J]. Ocean engineering, 2021, 240: 109915.
[27] 刘文吉, 杜佳璐, 李健, 李诤. 基于超螺旋滑模的船载稳定平台镇定控制[J]. 系统工程与电子技术, 2022, 44(5): 1662–1669
LIU Wwenji, DU Jialu, LI Jian, et al. Stabilization control for ship-borne stabilization platform based on super-twisting sliding mode[J]. Systems engineering and electronics, 2022, 44(5): 1662–1669
[28] 杜佳璐, 李健. 欠驱动水下机器人三维轨迹跟踪有限时间预设性能控制[J]. 控制理论与应用, 2022, 39(2): 383–392
DU Jialu, LI Jian. Finite-time prescribed performance control for the three-dimension trajectory tracking of underactuated AUV[J]. Control theory & applications, 2022, 39(2): 383–392
[29] ZHENG Zewei, FEROSKHAN M. Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances[J]. IEEE/ASME transactions on mechatronics, 2017, 22(6): 2564–2575.

备注/Memo

收稿日期:2022-09-16。
基金项目:国家重点研发项目(2019YFE0105400);船舶总体性能创新研究开放基金项目(31422117).
作者简介:赵杰,博士研究生,主要研究方向为水面无人艇运动控制和路径规划;蔡成涛, 教授,博士生导师,哈尔滨工程大学计算机科学与技术学院院长,国家级人才,主要研究方向为智能船舶控制、图像处理、全景视觉应用。获得国防科技进步一等奖3项、海洋工程科技进步二等奖1项、黑龙江省科技进步二等奖3项,主持国家及省市自然科学基金项目、基础科研项目等50余项。授权发明专利30余项。发表学术论文80余篇;乔人杰, 博士研究生,主要研究方向为全景视觉应用
通讯作者:蔡成涛.E-mail:caichengtao@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com