[1]李海丰,李纪霖,王怀超,等.复杂机场道面外来异物高精度实时检测算法[J].智能系统学报,2023,18(3):525-533.[doi:10.11992/tis.202110014]
 LI Haifeng,LI Jilin,WANG Huaichao,et al.High-precision real-time detection algorithm for foreign object debris on complex airport pavements[J].CAAI Transactions on Intelligent Systems,2023,18(3):525-533.[doi:10.11992/tis.202110014]
点击复制

复杂机场道面外来异物高精度实时检测算法

参考文献/References:
[1] O’DONNEL M J. Airport foreign object debris (FOD) detection equipment[EB/OL]. [2021?10?14].https://www.faa.gov/documentLibrary/media/Advisory_Circular/150_5210_24.pdf.
[2] 张道玲, 燕翔. 浅析机场跑道FOD监测系统[J]. 城市道桥与防洪, 2019(12): 186?188.
ZHANG Daoling, YAN Xiang. Brief analysis of airport runway FOD monitoring system[J]. Urban roads bridges & flood control, 2019(12): 186?188.
[3] 周云霆, 余南阳, 范若琛. 跑道异物检测光学传感器舱环控系统实验研究[J]. 制冷与空调, 2021, 35(1): 27–31
ZHOU Yunting, YU Nanyang, FAN Ruochen. Experimental study on the environmental control system of the optical airport runway foreign object debris sensor cabin[J]. Refrigeration & air conditioning, 2021, 35(1): 27–31
[4] 刘天畅, 周越. 民机试飞中基于图像分割和水雾模型FOD检测[J]. 电气自动化, 2020, 42(4): 107–109
LIU Tianchang, ZHOU Yue. FOD detection based on image segmentation and water mist model in test flight of civil aircraft[J]. Electrical automation, 2020, 42(4): 107–109
[5] LIANG Wei, ZHOU Zhangli, CHEN Xiangyang, et al. Research on airport runway FOD detection algorithm based on texture segmentation[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Chongqing: IEEE, 2020: 2103?2106.
[6] 张怡, 孙永荣, 刘梓轩, 等. 基于RTK定位的图像差分跑道异物检测[J]. 电子测量与仪器学报, 2020, 34(10): 51–56
ZHANG Yi, SUN Yongrong, LIU Zixuan, et al. Image difference detection of FOD based on RTK positioning[J]. Journal of electronic measurement and instrumentation, 2020, 34(10): 51–56
[7] XU Haoyu, HAN Zhenqi, FENG Songlin, et al. Foreign object debris material recognition based on convolutional neural networks[J]. EURASIP journal on image and video processing, 2018, 2018(1): 21.
[8] 鞠默然, 罗海波, 王仲博, 等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 0715004
JU Moran, LUO Haibo, WANG Zhongbo, et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Acta optica sinica, 2019, 39(7): 0715004
[9] 吴天舒, 张志佳, 刘云鹏, 等. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程, 2018, 47(7): 0703005
WU Tianshu, ZHANG Zhijia, LIU Yunpeng, et al. A lightweight small object detection algorithm based on improved SSD[J]. Infrared and laser engineering, 2018, 47(7): 0703005
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779?788.
[11] FARHADI A, REDMON J. Yolov3: An incremental improvement[C]//Computer Vision and Pattern Recognition. Berlin: Springer, 2018: 1804?2767.
[12] 郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5): 1292–1297
GUO Yuexiu, YANG Wei, LIU Qi, et al. Survey of residual network[J]. Application research of computers, 2020, 37(5): 1292–1297
[13] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936?944.
[14] DENG Chunfang, WANG Mengmeng, LIU Liang, et al. Extended feature pyramid network for small object detection[J]. IEEE transactions on multimedia, 2022, 24: 1968–1979.
[15] 陈科圻, 朱志亮, 邓小明, 等. 多尺度目标检测的深度学习研究综述[J]. 软件学报, 2021, 32(4): 1201–1227
CHEN Keqi, ZHU Zhiliang, DENG Xiaoming, et al. Deep learning for multi-scale object detection: a survey[J]. Journal of software, 2021, 32(4): 1201–1227
[16] 李彬, 喻夏琼, 王平, 等. 基于深度学习的单幅图像超分辨率重建综述[J]. 计算机工程与科学, 2021, 43(1): 112–124
LI Bin, YU Xiaqiong, WANG Ping, et al. A survey of single image super-resolution reconstruction based on deep learning[J]. Computer engineering and science, 2021, 43(1): 112–124
[17] 李海丰, 韩红阳. 复杂背景下机场道面细带状结构病害检测算法[J]. 北京航空航天大学学报, 2022, 48(1): 36–44
LI Haifeng, HAN Hongyang. Algorithm to detect thin strip-shaped structural diseases on airport pavement in complex background[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 36–44
[18] DONG Chao, LOY C C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision. Cham: Springer, 2014: 184?199.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770?778.
[20] 司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述[J]. 自动化学报, 2022, 48(8): 1890–1920
SI Nianwen, ZHANG Wenlin, QU Dan, et al. Review on visualization of convolutional neural network representation[J]. Acta automatica sinica, 2022, 48(8): 1890–1920
[21] 卢泓宇, 张敏, 刘奕群, 等. 卷积神经网络特征重要性分析及增强特征选择模型[J]. 软件学报, 2017, 28(11): 2879–2890
LU Hongyu, ZHANG Min, LIU Yiqun, et al. Convolution neural network feature importance analysis and feature selection enhanced model[J]. Journal of software, 2017, 28(11): 2879–2890
[22] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition. Hong Kong: IEEE, 2006: 850?855.
[23] HARTIGAN J A, WONG M A. Algorithm AS 136: a K-means clustering algorithm[J]. Applied statistics, 1979, 28(1): 100.
[24] LU Bin, ZHOU Lijuan, ZHANG Shudong, et al. Detection of small objects in complex long-distance scenes based on Yolov3[C]//2021 4th International Conference on Data Science and Information Technology. Shanghai: ACM, 2021: 98?102.
[25] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[26] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21?37.
相似文献/References:
[1]赵文清,周震东,翟永杰.基于反卷积和特征融合的SSD小目标检测算法[J].智能系统学报,2020,15(2):310.[doi:10.11992/tis.201905035]
 ZHAO Wenqing,ZHOU Zhendong,ZHAI Yongjie.SSD small target detection algorithm based on deconvolution and feature fusion[J].CAAI Transactions on Intelligent Systems,2020,15():310.[doi:10.11992/tis.201905035]
[2]赵文清,孔子旭,赵振兵.隔级融合特征金字塔与CornerNet相结合的小目标检测[J].智能系统学报,2021,16(1):108.[doi:10.11992/tis.202004033]
 ZHAO Wenqing,KONG Zixu,ZHAO Zhenbing.Small target detection based on a combination of feature pyramid and CornerNet[J].CAAI Transactions on Intelligent Systems,2021,16():108.[doi:10.11992/tis.202004033]
[3]毛莺池,唐江红,王静,等.基于Faster R-CNN的多任务增强裂缝图像检测方法[J].智能系统学报,2021,16(2):286.[doi:10.11992/tis.201910004]
 MAO Yingchi,TANG Jianghong,WANG Jing,et al.Multi-task enhanced dam crack image detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2021,16():286.[doi:10.11992/tis.201910004]
[4]齐鹏宇,王洪元,张继,等.基于改进FCOS的拥挤行人检测算法[J].智能系统学报,2021,16(4):811.[doi:10.11992/tis.202010012]
 QI Pengyu,WANG Hongyuan,ZHANG Ji,et al.Crowded pedestrian detection algorithm based on improved FCOS[J].CAAI Transactions on Intelligent Systems,2021,16():811.[doi:10.11992/tis.202010012]

备注/Memo

收稿日期:2021-10-14。
基金项目:国家重点研发计划项目 (2019YFB1310601);中央高校基本业务费项目(3122019120).
作者简介:李海丰,教授,主要研究方向为机器人环境感知、图像处理、计算机视觉、人工智能。主持并完成国家重点研发计划课题1项,国家自然科学基金项目1项,省部级重点实验室开放课题、中央高校课题以及横向课题7项。授权国家发明专利8项,技术成果已在企业应用。发表学术论文50余篇;李纪霖,硕士研究生,主要研究方向为人工智能与计算机视觉;王怀超,副教授,博士,主要研究方向为民航信息智能处理,于2016年被评为校青年骨干教师
通讯作者:李海丰.E-mail:lihf_cauc@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com