[1]罗玲,李硕凯,何清,等.基于知识图谱、TF-IDF和BERT模型的冬奥知识问答系统[J].智能系统学报,2021,16(4):819-826.[doi:10.11992/tis.202105047]
 LUO Ling,LI Shuokai,HE Qing,et al.Winter Olympic Q & A system based on knowledge map, TF-IDF and BERT model[J].CAAI Transactions on Intelligent Systems,2021,16(4):819-826.[doi:10.11992/tis.202105047]
点击复制

基于知识图谱、TF-IDF和BERT模型的冬奥知识问答系统

参考文献/References:
[1] 鞠晓峰, 都军, 覃军, 等. 人工智能在智能问答系统中的应用[J]. 智能建筑与智慧城市, 2021(3): 36-37
JU Xiaofeng, DU Jun, QIN Jun, et al. Application of artificial intelligence in intelligent question answering system[J]. Smart building and smart city, 2021(3): 36-37
[2] 王银丽. 限定领域内智能问答系统的研究与实现[D]. 内蒙古: 内蒙古大学, 2008.
WANG Yinli. Research and implementation of intelligent question answering system in limited domain[D]. Inner Mongolia: Inner Mongolia University, 2008.
[3] 张宁, 朱礼军. 中文问答系统问句分析研究综述[J]. 情报工程, 2016, 2(1): 32-42
ZHANG Ning, ZHU Lijun. A survey of the research on question and answer system in Chinese[J]. Technology intelligence engineering, 2016, 2(1): 32-42
[4] MISHRA A, JAIN S K. A survey on question answering systems with classification[J]. Journal of king saud university-computer and information sciences, 2016, 28(3): 345-361.
[5] 姚冬, 李舟军, 陈舒玮, 等. 面向任务的基于深度学习的多轮对话系统与技术[J]. 计算机科学, 2021, 48(5): 232-238
YAO Dong, LI Danjun, CHEN Shuwei, et al. Task oriented multi round dialogue system and technology based on deep learning[J]. Computer science, 2021, 48(5): 232-238
[6] FENG Minwei, XIANG Bing, GLASS M R, et. al. Applying deep learning to answer selection: a study and an open task[C]// 2015 IEEE Workshop on Automatic Speech Recognition and Understanding. IEEE, Piscataway, 2015: 813-820.
[7] 张涛, 贾真, 李天瑞. 等. 基于知识库的开放领域问答系统[J]. 智能系统学报, 2018, 13(4): 557-563
ZHANG Tao, JIA Zhen, LI Tianrui, et al. Open-domain question-answering system based on large-knowledge base[J]. CAAI transactions on intelligent systems, 2018, 13(4): 557-563
[8] NORASET T, LOWPHANSIRIKUL L, TUAROB S. Wabiqa: A wikipedia-based thai question-answering system[J]. Information processing & management, 2021, 58(1): 102431.
[9] H?FFNER K, WALTER S, MARX E, et al. Survey on challenges of question answering in the semantic web[J]. Semantic web, 2017, 8(6): 895-920.
[10] 李涛, 王次臣, 李华康. 知识图谱的发展与构建[J]. 南京理工大学学报(自然科学版), 2017, 41(1): 22-34
LI Tao, WANG Cichen, LI Huakang. Development and construction of knowledge map[J]. Journal of Nanjing University of Science and Technology (natural science edition), 2017, 41(1): 22-34
[11] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600
LIU Qiao, LI Yang, DUAN Hong, et al. Overview of knowledge mapping technology[J]. Journal of computer research and developmen, 2016, 53(3): 582-600
[12] 徐梦婷. 基于知识图谱的多轮问答系统[D]. 南京: 南京邮电大学, 2020.
XU Mengting. Multi round question answering system based on knowledge map[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020.
[13] 陈勇. 基于知识图谱的智能系统在电力行业的应用[D]. 南京: 南京师范大学, 2020.
CHEN Yong. Application of intelligent system based on knowledge map in power industry[D]. Nanjing: Nanjing Normal University, 2020.
[14] PRZYBY?A P. Boosting question answering by deep entity recognition[J]. arXiv preprint arXiv: 1605.08675, 2016.
[15] YIH Wentau, CHANG Mingwei. Semantic parsing via staged query graph generation: question answering with knowledge base[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing, China. 2015: 1321-1331.
[16] 贾中浩, 宾辰忠, 古天龙, 等. 基于知识图谱和用户长短期偏好的个性化景点推荐[J]. 智能系统学报, 2020, 15(5): 990-997
JIA Zhonghao, BIN Chenzhong, GU Tianlong, et al. Personalized attraction recommendation based on the knowledge graph and users’ long-term and short-term preferences[J]. CAAI transactions on intelligent systems, 2020, 15(5): 990-997
[17] 陆亚辉. 面向服务机器人的口语对话系统研究与实现[D]. 哈尔滨: 哈尔滨工业大学, 2017.
LU Yahui. Research and implementation of oral dialogue system for service robot[D]. Harbin: Harbin Institute of Technology, 2017.
[18] 张辛. 基于TFIDF算法的全面从严治党重要论述关键词共现分析[J]. 现代盐化工, 2019(7): 150-152
ZHANG Xin. Key words co-occurrence analysis of comprehensive and strict party governance based on TFIDF algorithm[J]. Modern salt chemical industry, 2019(7): 150-152
[19] 苏林萍, 林小倩, 陈飞, 等. 基于N-Gram和TFIDF的SQL注入检测方法[J]. 计算机与数字工程, 2021(6): 1177-1181
SU Linping, LIN Xiaoqian, CHEN Fei, et al. SQL injection detection method based on N-gram and TFIDF[J]. Computer and digital engineerin, 2021(6): 1177-1181
[20] 刘娟, 郝云强. 尹雪雪 网络舆情信息挖掘关键技术分析[J]. 信息科技, 2021(3): 94-95
LIU Juan, HAO Yunqiang, YIN Xuexue. Analysis on key technologies of network public opinion information mining[J]. Information technology, 2021(3): 94-95
[21] 吴思慧, 陈世平. 结合TFIDF的Self-Attention-Based Bi-LSTM的垃圾短信识别[J]. 计算机系统应用, 2020, 29(9): 171-177
WU Sihui, CHEN Shiping. Spam message recognition based on self attention based Bi LSTM combined with TFIDF[J]. Computer systems & applications, 2020, 29(9): 171-177
[22] 李海林, 邹金串. 基于分类词典的文本相似性度量方法[J]. 智能系统学报, 2017, 12(4): 556-562
LI Hailin, ZOU Jinchuan. Text similarity measure method based on classified dictionary[J]. CAAI transactions on intelligent systems, 2017, 12(4): 556-562
[23] 曹旭友, 周志平, 王利, 等. 基于BERT+ATT和DBSCAN的长三角专利匹配算法[J]. 信息技术, 2020, 44(3): 1-5, 12
CAO Xuyou, ZHOU Zhiping, WANG Zhao, et al. Patent matching algorithm in Yangtze River Delta Based on Bert + ATT and DBSCAN[J]. Information technology, 2020, 44(3): 1-5, 12
[24] 吴炎, 王儒敬. 基于BERT的语义匹配算法在问答系统中的应用[J]. 仪表技术, 2020(6): 19-22, 30
WU Yan, WANG Rujing. Application of semantic matching algorithm based on Bert in question answering system[J]. Instrumentation technology, 2020(6): 19-22, 30
[25] 朱鹤, 陆小锋, 薛雷. 基于BERT的金融文本情感分析模型[J], 上海大学学报:自然科学版. https://kns.cnki.net/kcms/detail/31.1718.n.20210616.1757.002.html.
ZHU He, LU Xiaofeng, XUE Lei. Financial text sentiment analysis model based on BERT[J]. Journal of Shanghai University (natural science edition). https://kns.cnki.net/kcms/detail/31.1718.n.20210616.1757.002.html.
[26] 孙士琦, 汤鲲. 基于BERT的中文地址分词方法[J]. 信息科技, 2021(9): 155-159
SUN Shiqi, TANG Kun. Chinese address segmentation method based on Bert[J]. Information technology, 2021(9): 155-159
[27] 彭宇, 李晓瑜, 胡世杰,等. 基于BERT的三阶段式问答模型[J]. 计算机应用, 2021(8): 1-8
PENG Yu, LI Xiaoyu, HU Shijie, et al. Three stage question answering model based on Bert[J]. Journal of computer applications, 2021(8): 1-8
[28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.

备注/Memo

收稿日期:2021-05-31。
基金项目:国家重点研发计划项目(2017YFB1002104)
作者简介:罗玲,女,硕士,主要研究方向为自然语言处理与强化学习;李硕凯,博士研究生,主要研究方向为数据挖掘、推荐系统与元学习;何清,研究员,博士生导师,中国人工智能学会副秘书长、常务理事、知识工程与分布智能专业委员会秘书长、机器学习专业委员会常务委员,中国计算机学会高级会员、人工智能与模式识别专业委员会委员,中国电子学会云计算专家委员会委员.主要研究方向为机器学习、数据挖掘、文本挖掘、基于云计算的分布式并行数据挖掘。主持和参与国家“863”和“973”计划、国家自然科学基金等科研项目多项, 2008年底,何清研究员带领他的中科院计算所数据挖掘团队,受中国移动研究院委托,合作开发完成了基于云计算的并行数据挖掘平台,用于TB级实际数据的挖掘,实现了高性能、低成本的数据挖掘。发表学术论文近百篇
通讯作者:何清.E-mail:heqing@ict.ac.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134