[1]段海滨,辛龙,邓亦敏.仿信鸽归巢行为的导航技术研究进展[J].智能系统学报,2021,16(1):1-10.[doi:10.11992/tis.202009049]
 DUAN Haibin,XIN Long,DENG Yimin.Technology research review on homing pigeon-inspired navigation[J].CAAI Transactions on Intelligent Systems,2021,16(1):1-10.[doi:10.11992/tis.202009049]
点击复制

仿信鸽归巢行为的导航技术研究进展(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年1期
页码:
1-10
栏目:
综述
出版日期:
2021-01-05

文章信息/Info

Title:
Technology research review on homing pigeon-inspired navigation
作者:
段海滨12 辛龙1 邓亦敏1
1. 北京航空航天大学 自动化科学与电气工程学院 ,北京 100083;
2. 鹏城实验室,广东 深圳 518000
Author(s):
DUAN Haibin12 XIN Long1 DENG Yimin1
1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
2. Peng Cheng Laboratory, Shenzhen 518000, China
关键词:
信鸽地图罗盘导航视觉导航马赛克地图位置熵无人机
Keywords:
homing pigeonmap-and-compassvisual nabigationmosaic mappositional entropyUAV
分类号:
V249.32
DOI:
10.11992/tis.202009049
摘要:
针对仿信鸽归巢行为的导航技术,本文首先简要叙述了信鸽归巢行为,并从地图和罗盘导航、视觉地标导航2个方面分析了信鸽导航的行为学实验和导航机制。随后,介绍了几种具有代表性的模拟信鸽归巢行为的理论模型和仿真模型。基于信鸽归巢导航行为机制和位置熵理论,提出了一种动态切换三阶段信鸽归巢模型,分别与信鸽归巢中的地图罗盘导航、步长重定向和马赛克地图导航行为建立映射关系,并给出了归巢导航模型仿真结果。最后,从信鸽归巢导航行为与无人机自主导航相似性出发,建立了信鸽归巢行为模型到无人机自主导航的机制映射,并探讨了仿信鸽归巢行为的导航技术未来研究方向。
Abstract:
Toward homing pigeon (Columba Livia) inspired navigation technology, we first introduce behaviors of homing pigeons and analyze the behavioral experiments and mechanisms of map-and-compass navigation and visual-landmark navigation, respectively, in this paper, then describe the representative simulation and theoretical models of homing pigeons. Based on the homing behavior mechanism and position entropy theory, we propose a dynamic switching three-stage homing model, establishing a mapping relationship among the behaviors of map-and-compass navigation, leg length redirection, and mosaic map navigation and providing the simulation results of the proposed homing navigation model. Finally, based on the similarity between the homing behavior of homing pigeons and autonomous navigation of a UAV, we establish the mechanism mapping from the homing behavior model of homing pigeons to autonomous navigation of a UAV, and discuss the future research direction of navigation technology imitating the homing behavior of homing pigeons.

参考文献/References:

[1] 褚金奎, 张然, 王志文, 等. 仿生偏振光导航传感器研究进展[J]. 科学通报, 2016, 61(23):2568-2577
CHU Jinkui, ZHANG Ran, WANG Zhiwen, et al. Progress on bio-inspired polarized skylight navigation sensor[J]. Chinese science bulletinl, 2016, 61(23):2568-2577
[2] WILTSCHKO W, WILTSCHKO R. Homing pigeons as a model for avian navigation?[J]. Journal of avian biology, 2017, 48(1):66-74.
[3] KRAMER G. Experiments on bird orientation and their interpretation[J]. IBIS, 1957, 99(2):196-227.
[4] WILTSCHKO R, WILTSCHKO W. Avian magnetic compass:its functional properties and physical basis[J]. Current zoology, 2010, 56(3):265-276.
[5] WILTSCHKO R. Navigation without technical aids:how pigeons find their way home[J]. European journal of navigation, 2012, 10(2):22-31.
[6] EMLEN S T, EMLEN J T. A technique for recording migratory orientation of captive birds[J]. The auk, 1966, 83(3):361-367.
[7] WALCOTT C, GREEN R P. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field[J]. Science, 1974, 184(4133):180-182.
[8] LEFELDT N, DREYER D, SCHNEIDER N L, et al. Migratory blackcaps tested in emlen funnels can orient at 85 but not at 88 degrees magnetic inclination[J]. Journal of experimental biology, 2014, 218(2):206-211.
[9] WILTSCHKO W, WILTSCHKO R. The role of outward journey information in the orientation of homing pigeons[M]. PAPI F, WALLRAFF H G. Avian Navigation. Berlin, Heidelberg, Germany:Springer, 1982:239-252.
[10] WILTSCHKO R, WALKER M, WILTSCHKO W. Sun-compass orientation in homing pigeons:compensation for different rates of change in azimuth?[J]. The journal of experimental biology, 2000, 203(5):889-894.
[11] LIPP H P, VYSSOTSKI A L, WOLFER D P, et al. Pigeon homing along highways and exits[J]. Current biology, 2004, 14(14):1239-1249.
[12] VYSSOTSKI A L, DELL’OMO G, DELL’ARICCIA G, et al. EEG responses to visual landmarks in flying pigeons[J]. Current biology, 2009, 19(14):1159-1166.
[13] WILTSCHKO R, WILTSCHKO W. Avian navigation:a combination of innate and learned mechanisms[J]. Advances in the study of behavior, 2015, 47(1):229-310.
[14] BIRO D, MEADE J, GUILFORD T. Familiar route loyalty implies visual pilotage in the homing pigeon[J]. Proceedings of the national academy of sciences, 2004, 101(50):17440-17443.
[15] BIRO D, FREEMAN R, MEADE J, et al. Pigeons combine compass and landmark guidance in familiar route navigation[J]. Proceedings of the national academy of sciences of the United States of America, 2007, 104(18):7471-7476.
[16] NAGY M, VáSáRHELYI G, PETTIT B, et al. Context-dependent hierarchies in pigeons[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(32):13049-13054.
[17] WILTSCHKO R, WILTSCHKO W. Avian navigation:a combination of innate and learned mechanisms[J]. Advances in the study of behavior, 2015, 47(1):229-310.
[18] NEHMZOW U, WILTSCHKO R. Computer modelling of pigeon navigation according to the "map and compass" model[J]. Orientation and navigation-birds, humans and other animals, 2001:49-51.
[19] WILTSCHKO R, NEHMZOW U. Simulating pigeon navigation[J]. Animal behaviour, 2005, 69(4):813-826.
[20] POSTLETHWAITE C M, WALKER M M. A geometric model for initial orientation errors in pigeon navigation[J]. Journal of theoretical biology, 2011, 269(1):273-279.
[21] POSTLETHWAITE C M, WALKER M M. A model for navigational errors in complex environmental fields[J]. Journal of theoretical biology, 2014, 363(1):134-144.
[22] ROBERTS S, GUILFORD T, REZEK I, et al. Positional entropy during pigeon homing I:application of bayesian latent state modelling[J]. Journal of theoretical biology, 2004, 227(1):39-50.
[23] GUILFORD T, ROBERTS S, BIRO D, et al. Positional entropy during pigeon homing Ⅱ:navigational interpretation of bayesian latent state models[J]. Journal of theoretical biology, 2004, 227(1):25-38.
[24] DUAN Haibin, QIAO Peixin. Pigeon-inspired optimization:a new swarm intelligence optimizer for air robot path planning[J]. International journal of intelligent computing and cybernetics, 2014, 7(1):24-37.
[25] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO:fast semi-direct monocular visual odometry[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014:15-22.
[26] LOWRY S, SüNDERHAUF N, NEWMAN P, et al. Visual place recognition:a survey[J]. IEEE transactions on robotics, 2015, 32(1):1-19.
[27] ULRICH I, NOURBAKHSH I. Appearance-based place recognition for topological localization[C]//Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA, 2000:1023-1029.

备注/Memo

备注/Memo:
收稿日期:2020-09-30。
基金项目:国家自然科学基金项目(U1913602,U20B2071,91948204,U19B2033);科技创新2030?“新一代人工智能”重大项目(2018AAA0100803)
作者简介:段海滨,教授,博士生导师,万人计划?科技创新领军人才、长江学者特聘教授、国家杰出青年科学基金获得者,主要研究方向为无人机集群自主控制、计算机仿生视觉与智能感知、仿生智能计算理论及应用。主持国家自然科学基金重点项目等多项课题。发表学术论文80余篇,出版《基于群体智能的无人机集群自主控制》等学术专著3 部;辛龙,博士研究生,主要研究方向为仿生视觉与人工智能、无人机导航与制导;邓亦敏,讲师,主要研究方向为仿生视觉与人工智能、无人机导航与制导
通讯作者:段海滨. E-mail:hbduan@buaa.edu.cn
更新日期/Last Update: 2021-02-25