[1]段海滨,辛龙,邓亦敏.仿信鸽归巢行为的导航技术研究进展[J].智能系统学报,2021,16(1):1-10.[doi:10.11992/tis.202009049]
 DUAN Haibin,XIN Long,DENG Yimin.Technology research review on homing pigeon-inspired navigation[J].CAAI Transactions on Intelligent Systems,2021,16(1):1-10.[doi:10.11992/tis.202009049]
点击复制

仿信鸽归巢行为的导航技术研究进展

参考文献/References:
[1] 褚金奎, 张然, 王志文, 等. 仿生偏振光导航传感器研究进展[J]. 科学通报, 2016, 61(23):2568-2577
CHU Jinkui, ZHANG Ran, WANG Zhiwen, et al. Progress on bio-inspired polarized skylight navigation sensor[J]. Chinese science bulletinl, 2016, 61(23):2568-2577
[2] WILTSCHKO W, WILTSCHKO R. Homing pigeons as a model for avian navigation?[J]. Journal of avian biology, 2017, 48(1):66-74.
[3] KRAMER G. Experiments on bird orientation and their interpretation[J]. IBIS, 1957, 99(2):196-227.
[4] WILTSCHKO R, WILTSCHKO W. Avian magnetic compass:its functional properties and physical basis[J]. Current zoology, 2010, 56(3):265-276.
[5] WILTSCHKO R. Navigation without technical aids:how pigeons find their way home[J]. European journal of navigation, 2012, 10(2):22-31.
[6] EMLEN S T, EMLEN J T. A technique for recording migratory orientation of captive birds[J]. The auk, 1966, 83(3):361-367.
[7] WALCOTT C, GREEN R P. Orientation of homing pigeons altered by a change in the direction of an applied magnetic field[J]. Science, 1974, 184(4133):180-182.
[8] LEFELDT N, DREYER D, SCHNEIDER N L, et al. Migratory blackcaps tested in emlen funnels can orient at 85 but not at 88 degrees magnetic inclination[J]. Journal of experimental biology, 2014, 218(2):206-211.
[9] WILTSCHKO W, WILTSCHKO R. The role of outward journey information in the orientation of homing pigeons[M]. PAPI F, WALLRAFF H G. Avian Navigation. Berlin, Heidelberg, Germany:Springer, 1982:239-252.
[10] WILTSCHKO R, WALKER M, WILTSCHKO W. Sun-compass orientation in homing pigeons:compensation for different rates of change in azimuth?[J]. The journal of experimental biology, 2000, 203(5):889-894.
[11] LIPP H P, VYSSOTSKI A L, WOLFER D P, et al. Pigeon homing along highways and exits[J]. Current biology, 2004, 14(14):1239-1249.
[12] VYSSOTSKI A L, DELL’OMO G, DELL’ARICCIA G, et al. EEG responses to visual landmarks in flying pigeons[J]. Current biology, 2009, 19(14):1159-1166.
[13] WILTSCHKO R, WILTSCHKO W. Avian navigation:a combination of innate and learned mechanisms[J]. Advances in the study of behavior, 2015, 47(1):229-310.
[14] BIRO D, MEADE J, GUILFORD T. Familiar route loyalty implies visual pilotage in the homing pigeon[J]. Proceedings of the national academy of sciences, 2004, 101(50):17440-17443.
[15] BIRO D, FREEMAN R, MEADE J, et al. Pigeons combine compass and landmark guidance in familiar route navigation[J]. Proceedings of the national academy of sciences of the United States of America, 2007, 104(18):7471-7476.
[16] NAGY M, VáSáRHELYI G, PETTIT B, et al. Context-dependent hierarchies in pigeons[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(32):13049-13054.
[17] WILTSCHKO R, WILTSCHKO W. Avian navigation:a combination of innate and learned mechanisms[J]. Advances in the study of behavior, 2015, 47(1):229-310.
[18] NEHMZOW U, WILTSCHKO R. Computer modelling of pigeon navigation according to the "map and compass" model[J]. Orientation and navigation-birds, humans and other animals, 2001:49-51.
[19] WILTSCHKO R, NEHMZOW U. Simulating pigeon navigation[J]. Animal behaviour, 2005, 69(4):813-826.
[20] POSTLETHWAITE C M, WALKER M M. A geometric model for initial orientation errors in pigeon navigation[J]. Journal of theoretical biology, 2011, 269(1):273-279.
[21] POSTLETHWAITE C M, WALKER M M. A model for navigational errors in complex environmental fields[J]. Journal of theoretical biology, 2014, 363(1):134-144.
[22] ROBERTS S, GUILFORD T, REZEK I, et al. Positional entropy during pigeon homing I:application of bayesian latent state modelling[J]. Journal of theoretical biology, 2004, 227(1):39-50.
[23] GUILFORD T, ROBERTS S, BIRO D, et al. Positional entropy during pigeon homing Ⅱ:navigational interpretation of bayesian latent state models[J]. Journal of theoretical biology, 2004, 227(1):25-38.
[24] DUAN Haibin, QIAO Peixin. Pigeon-inspired optimization:a new swarm intelligence optimizer for air robot path planning[J]. International journal of intelligent computing and cybernetics, 2014, 7(1):24-37.
[25] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO:fast semi-direct monocular visual odometry[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014:15-22.
[26] LOWRY S, SüNDERHAUF N, NEWMAN P, et al. Visual place recognition:a survey[J]. IEEE transactions on robotics, 2015, 32(1):1-19.
[27] ULRICH I, NOURBAKHSH I. Appearance-based place recognition for topological localization[C]//Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA, 2000:1023-1029.

备注/Memo

收稿日期:2020-09-30。
基金项目:国家自然科学基金项目(U1913602,U20B2071,91948204,U19B2033);科技创新2030?“新一代人工智能”重大项目(2018AAA0100803)
作者简介:段海滨,教授,博士生导师,主要研究方向为无人机集群自主控制、计算机仿生视觉与智能感知、仿生智能计算理论及应用。主持国家自然科学基金重点项目等多项课题。发表学术论文80余篇,出版《基于群体智能的无人机集群自主控制》等学术专著3 部;辛龙,博士研究生,主要研究方向为仿生视觉与人工智能、无人机导航与制导;邓亦敏,讲师,主要研究方向为仿生视觉与人工智能、无人机导航与制导.
通讯作者:段海滨. E-mail:hbduan@buaa.edu.cn

更新日期/Last Update: 2021-02-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134