[1]邓蔚,邢钰晗,李逸凡,等.公平性机器学习研究综述[J].智能系统学报,2020,15(3):578-586.[doi:10.11992/tis.202007004]
 DENG Wei,XING Yuhan,LI Yifan,et al.Survey on fair machine learning[J].CAAI Transactions on Intelligent Systems,2020,15(3):578-586.[doi:10.11992/tis.202007004]
点击复制

公平性机器学习研究综述

参考文献/References:
[1] 高庆吉, 赵志华, 徐达, 等. 语音情感识别研究综述[J]. 智能系统学报, 2020, 15(1): 1-13
GAO Qingji, ZHAO Zhihua, XU Da, et al. Review on speech emotion recognition research[J]. CAAI transactions on intelligent systems, 2020, 15(1): 1-13
[2] YOCHUM P, 常亮, 古天龙, 等. 基于位置和开放链接数据的旅游推荐系统综述[J]. 智能系统学报, 2020, 15(1): 25-32
YOCHUM P, CHANG Liang, GU Tianlong, et al. A review of linked open data in location-based recommendation system in the tourism domain[J]. CAAI transactions on intelligent systems, 2020, 15(1): 25-32
[3] 常乐, 杨忠, 张秋雁, 等. 悬挂负载空中机器人的抗摆控制[J]. 应用科技, 2020, 47(2): 17-22
CHANG Le, YANG Zhong, ZHANG Qiuyan, et al. Anti-swing control research of aerial robot with suspended load[J]. Applied science and technology, 2020, 47(2): 17-22
[4] KHANDANI A E, KIM A J, LO A W. Consumer credit-risk models via machine-learning algorithms[J]. Journal of banking and finance, 2010, 34(11): 2767-2787.
[5] BRENNAN T, DIETERICH W, EHRET B. Evaluating the predictive validity of the compas risk and needs assessment system[J]. Criminal justice and behavior, 2009, 36(1): 21-40.
[6] MAHONEY J F, MOHEN J M. Method and system for loan origination and underwriting[P]. US: 7287008.1, 2007-10-23.
[7] KEARNS M, ROTH A. The ethical algorithm: the science of socially aware algorithm design[M]. New York: Oxford University Press, 2019: 11.
[8] IEEE新版“人工智能设计的伦理准则”白皮书全球重磅发布[EB/OL]. (2017-12-15)[2020-07-26] https://www.sohu.com/a/210646713_468720.
[9] Publications Office of the EU[EB/OL]. (2018-03-09)[2020-07-26] https://op.europa.eu/en/publication-detail/-/publication/dfebe62e-4ce9-11e8-be1d-01aa75ed71a1/language-en/format-PDF/source-78120382.
[10] 吴沈括, 周洁, 杨滢滢. 人工智能伦理与数据保护宣言[EB/OL]. (2018-10-30)[2020-07-26]. http://www.yidianzixun.com/m/article/0KOD5oLY.
[11] OECD Principles on AI[EB/OL]. [2020-07-26] https://www.oecd.org/going-digital/ai/principles/.
[12] G20 ministerial statement on trade and digital economy[EB/OL]. (2019-06-09)[2020-07-26] http://www.g20.utoronto.ca/2019/2019-g20-trade.html.
[13] 国家新一代人工智能治理专业委员会. 发展负责任的人工智能: 新一代人工智能治理原则发布[EB/OL]. (2019-06-17)[2020-07-26] http://www.most.gov.cn/kjbgz/201906/t20190617_147107.htm.
[14] FRIEDLER S A, SCHEIDEGGER C, VENKATASUBRAMANIAN S, et al. A comparative study of fairness-enhancing interventions in machine learning[C]//Proceedings of the Conference on Fairness, Accountability, and Transparency. New York, USA, 2019: 329-338.
[15] KUSNER M, LOFTUS J, RUSSEL C, et al. Counterfactual fairness[C]//Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach, USA, 2017.
[16] GRGI?-HLA?A N, ZAFAR M B, GUMMADI K P, et al. The case for process fairness in learning: feature selection for fair decision making[C]//Symposium on Machine Learning and the Law at the 29th Conference on Neural Information Processing Systems. Barcelona, Spain, 2016: 1.
[17] DWORK C, HARDT M, PITASSI T, et al. Fairness through awareness[C]//Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. New York, USA, 2012: 214-226.
[18] JOSEPH M, KEARNS M, MORGENSTERN J, et al. Rawlsian fairness for machine learning [DB/OL]. (2017-06-29)[2020-08-07] arXiv preprint arXiv:1610. 09559V2, arxiv.org/abs/1610.09559v2, 2016.
[19] LOUIZOS C, SWERSKY K, LI Yujia, et al. The variational fair autoencoder[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, 2016.
[20] ZEMEL R, WU Yu, SWERSKY K, et al. Learning fair representations[C]//Proceedings of the 30th International Conference on International Conference on Machine Learning. Atlanta, USA, 2013: 325-333.
[21] KIM M P, KOROLOVA A, ROTHBLUM G N, et al. Preference-informed fairness[C]//Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New York, USA, 2020: 546.
[22] ZAFA M B, VALERA I, ROGRIGUEZ M G, et al. Fairness constraints: mechanisms for fair classification[C]//Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Lille, France, 2017: 962-970.
[23] ZAFAR M B, VALERA I, RODRIGUEZ M G, et al. Fairness beyond disparate treatment & disparate impact: learning classification without disparate mistreatment[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia, 2017: 1171-1180.
[24] BERETTA E, SANTANGELO A, LEPRI B, et al. The invisible power of fairness. How machine learning shapes democracy [DB/OL]. (2019-03-22)[2020-07-26] arXiv preprint arXiv:1903.09493v1, https://arxiv.org/abs/1903.09493, 2019.
[25] CHOULDECHOVA A. Fair prediction with disparate impact: a study of bias in recidivism prediction instruments[J]. Big data, 2017, 5(2): 153-163.
[26] BAROCAS S, SELBST A D. Big data’s disparate impact[J]. California law review, 2016, 104: 671-732.
[27] KEARNS M, ROTH A, WU Z S. Meritocratic fairness for cross-population selection[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia, 2017: 1828-1836.
[28] KLEINBERG J, MULLAINATHAN S, RAGHAVAN M. Inherent trade-offs in the fair determination of risk scores[C]//Proceedings of the 8th Innovations in Theoretical Computer Science Conference. Dagstuhl, Germany, 2017.
[29] Supreme Court of the United States. Ricci v. DeStefano [EB/OL]. (2009-06-29)[ 2020-08-07]. 557 U.S. 557,https://supreme.justia.com/cases/federal/us/557/557/, 2009.
[30] Adult data[EB/OL]. [2020-07-26]. http://tinyurl.com/UCI-Adult, 1996.
[31] LICHMAN M. UCI machine learning repository[EB/OL]. (2013)[2020-07-26]. http://archive.ics.uci.edu/ml, 2013.
[32] ANGWIN J, LARSON J, MATTU S, et al. Machine bias. risk assessments in criminal sentencing[EB/OL]. (2016-05-23)[2020-07-26] https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing, 2016.
[33] Bank Marketing Data Set [EB/OL]. (2012-02-14) [2020-07-26] https://archive.ics.uci.edu/ml/datasets/Bank%2BMarketing, 2012.
[34] KHADEMI A, LEE S, FOLEY D, et al. Fairness in algorithmic decision making: an excursion through the lens of causality[C]//The World Wide Web Conference. San Francisco, USA, 2019: 2907-2914.
[35] FELDMAN M, FRIEDLER S A, MOELLER J, et al. Certifying and removing disparate impact[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2015: 259-268.
[36] KAMIRAN F, CALDERS T. Data preprocessing techniques for classification without discrimination[J]. Knowledge and information systems, 2012, 33(1): 1-33.
[37] CALMON F P, WEI D, VINZAMURI B, et al. Optimized pre-processing for discrimination prevention[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, USA, 2017: 3995-4004.
[38] KAMISHIMA T, AKAHO S, ASOH H, et al. Fairness-aware classifier with prejudice remover regularizer[M]//FLACH P A, DE BIE T, CRISTIANINI N. Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2012: 35-50.
[39] CALDERS T, VERWER S. Three naive Bayes approaches for discrimination-free classification[J]. Data mining and knowledge discovery, 2010, 21(2): 277-292.
[40] BOSE A J, HAMILTON W. Compositional fairness constraints for graph embeddings [DB/OL]. (2019-07-16)[2020-07-07] https://arxiv.org/abs/1905.10674, 2019.
[41] HARDT M, PRICE E, SREBRO N. Equality of opportunity in supervised learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook, USA, 2016: 3315-3323.
[42] KAMIRAN F, CALDERS T. Classifying without discriminating[C]//Proceedings of 2009 2nd International Conference on Computer, Control and Communication. Karachi, Pakistan, 2009.
[43] WOODWORTH B, GUNASEKAR S, OHANNESSIAN M I, et al. Learning non-discriminatory predic-tors [EB/OL]. (2017-11-01)[2020-07-07] https://arxiv.org/abs/1702.06081, 2017.
[44] CORBETT-DAVIES S, GOEL S. The measure and mismeasure of fairness: a critical review of fair machine learning [DB/OL]. (2018-08-14)[2020-07-07] https://arxiv.org/abs/1808. 00023, 2018.
[45] KANNAN S, KEARNS M, MORGENSTERN J, et al. Fairness incentives for myopic agents[C]//Proceedings of the 2017 ACM Conference on Economics and Computation. New York, USA, 2017: 369-386.
[46] CORBETT-DAVIES S, PIERSON E, FELLER A, et al. Algorithmic decision making and the cost of fairness[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2017: 797-806.
[47] D’AMOUR A, SRINIVASAN H, ATWOOD J, et al. Fairness is not static: deeper understanding of long term fairness via simulation studies[C]//Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. Barcelona, Spain, 2020: 525-534.
[48] Google/ml-fairness-gym[EB/OL]. [2020-07-26] https://github.com/google/ml-fairness-gym/.
[49] KUPPAM S, MCKENNA R, PUJOL D, et al. Fair decision making using privacy-protected data [DE/OL]. (2020-01-24)[2020-08-07] https://arxiv.org/abs/1905.12744, 2020.
[50] SLACK D, FRIEDLER S A, GIVENTAL E. Fairness warnings and fair-MAML: learning fairly with minimal data[C]//Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. Barcelona, Spain, 2019: 200-209.
[51] GANCHEV K, KEARNS M, NEVMYVAKA Y, et al. Censored exploration and the dark pool problem[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, USA, 2009: 185-194.
[52] DONAHUE K, KLEINBERG J. Fairness and utilization in allocating resources with uncertain demand[C]//Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New York, USA, 2020: 658-668.
[53] DEVRIES T, MISRA I, WANG C, et al. 2019. Does object recognition work for everyone? [EB/OL]. (2019-06-18)[2020-07-07] https://arxiv.org/abs/1906.02659, 2019.
[54] STOCK P, CISSE M. ConvNets and ImageNet beyond accuracy: understanding mistakes and uncovering biases[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 498-512.
[55] DULHANTY C, WONG A. Auditing imageNet: towards a model-driven framework for annotating demographic attributes of large-scale image datasets [EB/OL]. (2019-06-04)[2020-07-07] https://arxiv.org/abs/1905.01347, 2019.
[56] YANG Kaiyu, QINAMI K, FEI-FEI L, et al. Towards fairer datasets: filtering and balancing the distribution of the people subtree in the ImageNet hierarchy[C]//Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. New York, USA, 2020: 547-558.
[57] BORDIA S, BOWMAN S R. Identifying and reducing gender bias in word-level language models[C]//Proceedings of the 9th American Chapter of the Association for Computational Linguistics. Minneapolis, Minnesota, 2019: 7-15.
[58] GREEN B, CHEN Yiling. Disparate interactions: an algorithm-in-the-loop analysis of fairness in risk assessments[C]//Proceedings of the Conference on Fairness, Accountability, and Transparency. Atlanta, USA, 2019: 90-99.
[59] SONG Jiaming, KALLURI P, GROVER A, et al. Learning Controllable Fair Representations[C]//Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics. Naha, Japan, 2019: 2164-2173.
[60] LIU L T, DEAN S, ROLF E, et al. Delayed impact of fair machine learning[C]//Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden, 2018: 3150-3158.

备注/Memo

收稿日期:2020-07-02。
基金项目:国家自然科学基金重点项目(61936001)
作者简介:邓蔚,讲师,博士后,主要研究方向为知识图谱、机器行为学、计算社会科学与算法伦理。近年来参与国家自然科学基金重点项目、国家重点研发计划等国家级项目3项。申请国家发明专利10余项,发表学术论文30余篇,出版学术著作1部;邢钰晗,硕士研究生,主要研究方向为公平性机器学习和数据科学;王国胤,教授,博士生导师,重庆邮电大学副校长,研究生院院长,人工智能学院院长,中国人工智能学会副理事长,主要研究方向为粗糙集、粒计算和认知计算。近年来承担多个国家重点研发计划、国家自然科学基金重点项目等。发表学术论文300余篇,出版专著10余部.
通讯作者:王国胤.E-mail:wanggy@cqupt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134