[1]崔铁军,李莎莎.系统可靠-失效模型的哲学意义与智能实现[J].智能系统学报,2020,15(6):1104-1112.[doi:10.11992/tis.202003047]
 CUI Tiejun,LI Shasha.Philosophical significance and implementation of an intelligent system based on the system reliability-failure model[J].CAAI Transactions on Intelligent Systems,2020,15(6):1104-1112.[doi:10.11992/tis.202003047]
点击复制

系统可靠-失效模型的哲学意义与智能实现(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年6期
页码:
1104-1112
栏目:
学术论文—人工智能基础
出版日期:
2020-11-05

文章信息/Info

Title:
Philosophical significance and implementation of an intelligent system based on the system reliability-failure model
作者:
崔铁军1 李莎莎2
1. 辽宁工程技术大学 安全科学与工程学院, 辽宁 阜新 123000;
2. 辽宁工程技术大学 工商管理学院, 辽宁 葫芦岛 125105
Author(s):
CUI Tiejun1 LI Shasha2
1. College of Safety Science and Engineering, Liaoning Technical University, Fuxin 123000, China;
2. School of Business Administration, Liaoning Technical University, Huludao 125105, China
关键词:
安全科学智能科学信息科学系统工程可靠与失效模型研究哲学意义智能实现
Keywords:
safety scienceintelligent scienceinformation sciencesystem engineeringreliability and failuremodel researchphilosophical significanceintelligent realization
分类号:
TP18;X913;C931.1
DOI:
10.11992/tis.202003047
摘要:
为适应未来无人化、智能化、数据化和信息化的复杂系统,必须建立智能系统以代替人的工作。该智能系统的目标是使功能系统达到预定功能并保持功能稳定,即控制系统可靠与失效状态的转化。因此提出系统可靠-失效模型(system reliability failure model, SRFM),并讨论基于SRFM实现智能系统的方式,论述了系统在哲学层面的相关观点;从哲学角度论述SRFM的意义,包括认识论、矛盾论、系统论和方法论意义。在具有哲学意义基础上,使用信息生态方法论(information ecology methodology, IEM)、因素空间理论(factor space theory, FS)及泛逻辑理论(universal logic theory, UL),并融入空间故障树理论(space fault tree theory, SFT)来智能地实现SRFM。本文是面向未来复杂系统的SRFM研究,是安全科学理论和智能科学研究必须面对的问题,也是必须尽早完成的工作。
Abstract:
To adapt to unmanned, intelligent, data-and information-based future complex systems, it is necessary to establish an intelligent system that is capable of replacing human work. The goal of this intelligent system should be to generate a functional system that realizes predetermined functions and keeps the functions stable, i.e., to control the transformation of system reliability and failure state. Therefore, in this paper, we propose a system reliability–failure model (SRFM) and discuss the implementation of an SRFM-based intelligent system. We also discuss viewpoints related to the philosophical dimensions of the system and philosophical significance of the SRFM with respect to epistemology, contradiction theory, system theory, and methodology. Based on this philosophical significance, we designed an SRFM-based intelligent system using the information ecology methodology, factor space theory, and universal logic theory integrated with the space fault tree theory. Regarding research on SRFMs for future complex systems, we consider that the problems associated with safety science theory and intelligent science research must be immediately addressed.

参考文献/References:

[1] 欧阳秋梅, 吴超. 安全观的塑造机理及其方法研究[J]. 中国安全生产科学技术, 2016, 12(9): 14-19
OUYANG Qiumei, WU Chao. Research on forming mechanism and methods of safety idea[J]. Journal of safety science and technology, 2016, 12(9): 14-19
[2] 周玉佳. 本体安全与符号的索引性: 探究社会安全观的人类学分析路径[J]. 西南民族大学学报(人文社科版), 2015, 36(6): 60-64
[3] 翟安康. “安全问题”的哲学追问[J]. 苏州大学学报(哲学社会科学版), 2015, 36(3): 21-25
ZHAI Ankang. Philosophical inquiry on “safety issues”[J]. Journal of Soochow University (Philosophy & Social Science Edition), 2015, 36(3): 21-25
[4] 刘国愈, 雷玲. 海因里希事故致因理论与安全思想因素分析[J]. 安全与环境工程, 2013, 20(1): 138-142
LIU Guoyu, LEI Ling. Analysis of Heinrich accident-causing theory and the factors of safety ideology[J]. Safety and environmental engineering, 2013, 20(1): 138-142
[5] 钟群鹏, 张峥, 傅国如, 等. 失效学的哲学理念及其应用探讨[J]. 机械工程学报, 2011, 47(2): 25-30
ZHONG Qunpeng, ZHANG Zheng, FU Guoru, et al. The philosophy and application of failure study[J]. Journal of mechanical engineering, 2011, 47(2): 25-30
[6] 斯文·欧威·汉森. 技术哲学视阈中的风险和安全[J]. 东北大学学报(社会科学版), 2011, 13(1): 1-6
HANSEN S O. Risk and safety from the viewpoint of philosophy of technology[J]. ZHANG Qiucheng, trans. Journal of Northeastern University (Social Science Edition), 2011, 13(1): 1-6
[7] 冯昊青. 安全之为科技伦理的首要原则及其意义——基于人类安全观和风险社会视角[J]. 湖北大学学报(哲学社会科学版), 2010, 37(1): 46-51
FENG Haoqing. Safety: the cardinal principle of scientific ethics[J]. Journal of Hubei University (Philosophy and Social Sciences), 2010, 37(1): 46-51
[8] 宁德春, 王建平. 基于科学发展观的安全哲学思考[J]. 中国安全科学学报, 2009, 19(9): 71-77
NING Dechun, WANG Jianping. Philosophical thinking of safety from the perspective of scientific development concept[J]. China safety science journal, 2009, 19(9): 71-77
[9] 贾惠彬, 盖永贺, 李保罡, 等. 基于强化学习的电力通信网故障恢复方法[J]. 中国电力, 2020, 53(6): 34-40
JIA Huibin, GAI Yonghe, LI Baogang, et al. Power communication network recovery from large-scale failures based on reinforcement learning[J]. Electric power, 2020, 53(6): 34-40
[10] 尹相国, 张文, 路致远, 等. 面向智能变电站二次设备的故障诊断方法研究[J]. 电测与仪表, 2020, 57(3): 39-45
YIN Xiangguo, ZHANG Wen, LU Zhiyuan, et al. Research on fault diagnosis method for secondary equipment of intelligent substation[J]. Electrical measurement & instrumentation, 2020, 57(3): 39-45
[11] 范士雄, 李立新, 王松岩, 等. 人工智能技术在电网调控中的应用研究[J]. 电网技术, 2020, 44(2): 401-411
FAN Shixiong, LI Lixin, WANG Songyan, et al. Application analysis and exploration of artificial intelligence technology in power grid dispatch and control[J]. Power system technology, 2020, 44(2): 401-411
[12] 徐红辉, 王翀, 范杰. 基于故障状态演化的高速公路机电设备智能维护系统设计[J]. 现代电子技术, 2019, 42(24): 112-115
XU Honghui, WANG Chong, FAN Jie. Design of fault state evolution based intelligent maintenance system for electromechanical equipments on expressway[J]. Modern electronics technique, 2019, 42(24): 112-115
[13] BENSAOUCHA S, BESSEDIK S A, AMEUR A, et al. Induction motors broken rotor bars detection using RPVM and neural network[J]. Compel, 2019, 38(2): 596-615.
[14] NOURELDEEN O, HAMDAN I, HASSANIN B. Design of advanced artificial intelligence protection technique based on low voltage ride-through grid code for large-scale wind farm generators: a case study in Egypt[J]. SN applied sciences, 2019, 1(6): 515.
[15] 王春影. 低温环境下汽车发动机运行故障智能诊断仿真[J]. 计算机仿真, 2018, 35(12): 131-134
WANG Chunying. Intelligent diagnosis of automobile engine running fault in low temperature environment[J]. Computer simulation, 2018, 35(12): 131-134
[16] ZANG Yu, WEI Shanguan, CAI Baigen, et al. Methods for fault diagnosis of high-speed railways: a review[J]. Proceedings of the Institution of mechanical engineers, part O: journal of risk and reliability, 2019, 233(5): 908-922.
[17] 高凯, 宋娜, 王红艳, 等. 基于大数据的地铁车辆智能故障监测系统研究[J]. 铁道机车车辆, 2019, 39(S1): 35-39
GAO Kai, SONG Na, WANG Hongyan, et al. Research on intelligent fault monitoring system for metro vehicles based on big data[J]. Railway locomotive & car, 2019, 39(S1): 35-39
[18] 张龙, 吴荣真, 雷兵, 等. 基于多尺度熵的滚动轴承故障可拓智能识别[J]. 噪声与振动控制, 2019, 39(6): 200-205
ZHANG Long, WU Rongzhen, LEI Bing, et al. Extensible intelligent identification for rolling bearing faults using multiscale entropy[J]. Noise and vibration control, 2019, 39(6): 200-205
[19] KUNCAN M, KAPLAN K, MI?NAZ M R, et al. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns[J]. ISA transactions, 2020, 100: 346-357.
[20] 崔铁军, 李莎莎. 安全科学中的故障信息转换定律[J]. 智能系统学报, 2020, 15(2): 360-366
CUI Tiejun, LI Shasha. Conversion law of fault information in safety science[J]. CAAI transactions on intelligent systems, 2020, 15(2): 360-366
[21] LIU Xiaolian, TIAN Yu, LEI Xiaohui, et al. Deep forest based intelligent fault diagnosis of hydraulic turbine[J]. Journal of mechanical science and technology, 2019, 33(5): 2049-2058.
[22] WANG Shiqiang, XING Jianchun, JIANG Ziyan, et al. A novel sensors fault detection and self-correction method for HVAC systems using decentralized swarm intelligence algorithm[J]. International journal of refrigeration, 2019, 106: 54-65.
[23] NASIRI A, TAHERI-GARAVAND A, OMID M, et al. Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images[J]. Applied thermal engineering, 2019, 163: 114410.
[24] CUI Tiejun, LI Shasha. System movement space and system mapping theory for reliability of IoT[J]. Future generation computer systems, 2020, 107: 70-81.
[25] 钟义信, 张瑞. 信息生态学与语义信息论[J]. 图书情报知识, 2017(6): 4-11
ZHONG Yixin, ZHANG Rui. Information ecology and semantic information theory[J]. Documentation, information & knowledge, 2017(6): 4-11
[26] 钟义信. 从“机械还原方法论”到“信息生态方法论”——人工智能理论源头创新的成功路[J]. 哲学分析, 2017, 8(5): 133-144
ZHONG Yixin. From mechanical reductionism to methodology of information ecology: successful approach to innovation for AI theory[J]. Philosophical analysis, 2017, 8(5): 133-144
[27] 钟义信. 从信息科学视角看《信息哲学》[J]. 哲学分析, 2015, 6(1): 17-31
ZHONG Yixin. Information science and its view on information philosophy[J]. Philosophical analysis, 2015, 6(1): 17-31
[28] 钟义信. 高等智能·机制主义·信息转换[J]. 北京邮电大学学报, 2010, 33(1): 1-6
ZHONG Yixin. Advanced intelligence-mechanism approach-information conversion[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(1): 1-6
[29] LEVESON N G. Engineering a safer world: systems thinking applied to safety[M]. Cambridge, Mass: MIT Press, 2011.
[30] 南希·莱文森. 基于系统思维构筑安全系统[M]. 唐涛, 牛儒, 译. 北京: 国防工业出版社, 2015: 6, 12.
[31] 崔铁军, 汪培庄. 空间故障树与因素空间融合的智能可靠性分析方法[J]. 智能系统学报, 2019, 14(5): 853-864
CUI Tiejun, WANG Peizhuang. Intelligent reliability analysis method based on space fault tree and factor space[J]. CAAI transactions on intelligent systems, 2019, 14(5): 853-864
[32] 崔铁军, 马云东. 基于因素空间的煤矿安全情况区分方法的研究[J]. 系统工程理论与实践, 2015, 35(11): 2891-2897
CUI Tiejun, MA Yundong. Research on the classification method about coal mine safety situation based on the factor space[J]. Systems engineering-theory & practice, 2015, 35(11): 2891-2897
[33] 崔铁军, 马云东. 因素空间的属性圆定义及其在对象分类中的应用[J]. 计算机工程与科学, 2015, 37(11): 2170-2174
CUI Tiejun, MA Yundong. Definition of attribute circle in factor space and its application in object classification[J]. Computer engineering & science, 2015, 37(11): 2170-2174
[34] 崔铁军, 马云东. 基于因素空间中属性圆对象分类的相似度研究及应用[J]. 模糊系统与数学, 2015, 29(6): 56-63
CUI Teijun, MA Yundong. Research on the similarity of object classification of attribute circular and application based on factors space[J]. Fuzzy systems and mathematics, 2015, 29(6): 56-63
[35] 崔铁军, 李莎莎, 王来贵. 完备与不完备背景关系中蕴含的系统功能结构分析[J]. 计算机科学, 2017, 44(3): 268-273, 306
CUI Tiejun, LI Shasha, WANG Laigui. System function structure analysis in complete and incomplete background relationship[J]. Computer science, 2017, 44(3): 268-273, 306
[36] 何华灿. 重新找回人工智能的可解释性[J]. 智能系统学报, 2019, 14(3): 393-412
HE Huacan. Refining the interpretability of artificial intelligence[J]. CAAI transactions on intelligent systems, 2019, 14(3): 393-412
[37] 何华灿. 泛逻辑学理论——机制主义人工智能理论的逻辑基础[J]. 智能系统学报, 2018, 13(1): 19-36
HE Huacan. Universal logic theory: logical foundation of mechanism-based artificial intelligence theory[J]. CAAI transactions on intelligent systems, 2018, 13(1): 19-36
[38] 何华灿. 人工智能基础理论研究的重大进展——评钟义信的专著《高等人工智能原理》[J]. 智能系统学报, 2015, 10(1): 163-166
HE Huacan. Significant progress in basic theory of artificial intelligence—on Zhong Yixin’s monograph “principles of advanced artificial intelligence”[J]. CAAI transactions on intelligent systems, 2015, 10(1): 163-166
[39] 崔铁军, 马云东. 多维空间故障树构建及应用研究[J]. 中国安全科学学报, 2013, 23(4): 32-37
CUI Tiejun, MA Yundong. Research on multi-dimensional space fault tree construction and application[J]. China safety science journal, 2013, 23(4): 32-37
[40] 崔铁军, 汪培庄, 马云东. 01SFT中的系统因素结构反分析方法研究[J]. 系统工程理论与实践, 2016, 36(8): 2152-2160
CUI Tiejun, WANG Peizhuang, MA Yundong. Inward analysis of system factor structure in 01 space fault tree[J]. Systems engineering-theory & practice, 2016, 36(8): 2152-2160
[41] 崔铁军, 李莎莎. 空间故障树与空间故障网络理论综述[J]. 安全与环境学报, 2019, 19(2): 399-405
CUI Tiejun, LI Shasha. Revision of the space fault tree and the space fault network system[J]. Journal of safety and environment, 2019, 19(2): 399-405

相似文献/References:

[1]李德毅.AI——人类社会发展的加速器[J].智能系统学报,2017,12(05):583.[doi:10.11992/tis.201710016]
 LI Deyi.Artificial intelligence:an accelerator for the development of human society[J].CAAI Transactions on Intelligent Systems,2017,12(6):583.[doi:10.11992/tis.201710016]
[2]崔铁军,李莎莎.SFEP文本因果关系提取及其与SFN转化研究[J].智能系统学报,2020,15(5):998.[doi:10.11992/tis.201907021]
 CUI Tiejun,LI Shasha.Causality extraction of SFEP text and its conversion to SFN[J].CAAI Transactions on Intelligent Systems,2020,15(6):998.[doi:10.11992/tis.201907021]
[3]崔铁军,李莎莎.系统故障因果关系分析的智能驱动方式研究[J].智能系统学报,2021,16(1):92.[doi:10.11992/tis.202003001]
 CUI Tiejun,LI Shasha.Intelligent analysis of system fault data and fault causal relationship[J].CAAI Transactions on Intelligent Systems,2021,16(6):92.[doi:10.11992/tis.202003001]
[4]崔铁军,李莎莎.基于因素空间的人工智能样本选择策略[J].智能系统学报,2021,16(2):346.[doi:10.11992/tis.202003002]
 CUI Tiejun,LI Shasha.Sample selection strategy of artificial intelligence based on factor space[J].CAAI Transactions on Intelligent Systems,2021,16(6):346.[doi:10.11992/tis.202003002]
[5]崔铁军,李莎莎.人工智能系统故障分析原理研究[J].智能系统学报,2021,16(4):785.[doi:10.11992/tis.202003046]
 CUI Tiejun,LI Shasha.Research on system fault analysis principle based on artificial intelligence system[J].CAAI Transactions on Intelligent Systems,2021,16(6):785.[doi:10.11992/tis.202003046]
[6]崔铁军,汪培庄.空间故障树与因素空间融合的智能可靠性分析方法[J].智能系统学报,2019,14(5):853.[doi:10.11992/tis.201807022]
 CUI Tiejun,WANG Peizhuang.Intelligent reliability analysis method based on space fault tree and factor space[J].CAAI Transactions on Intelligent Systems,2019,14(6):853.[doi:10.11992/tis.201807022]
[7]崔铁军,李莎莎.安全科学中的故障信息转换定律[J].智能系统学报,2020,15(2):360.[doi:10.11992/tis.201811004]
 CUI Tiejun,LI Shasha.Conversion law of fault information in safety science[J].CAAI Transactions on Intelligent Systems,2020,15(6):360.[doi:10.11992/tis.201811004]
[8]崔铁军,李莎莎.系统运动空间与系统映射论的初步探讨[J].智能系统学报,2020,15(3):445.[doi:10.11992/tis.201902011]
 CUI Tiejun,LI Shasha.Preliminary study of system movement space and system mapping theory[J].CAAI Transactions on Intelligent Systems,2020,15(6):445.[doi:10.11992/tis.201902011]
[9]崔铁军,李莎莎.空间故障网络的柔性逻辑描述[J].智能系统学报,2021,16(3):552.[doi:10.11992/tis.202003029]
 CUI Tiejun,LI Shasha.Flexible logic description of space fault network[J].CAAI Transactions on Intelligent Systems,2021,16(6):552.[doi:10.11992/tis.202003029]
[10]崔铁军,李莎莎.线性熵的系统故障熵模型及其时变研究[J].智能系统学报,2021,16(6):1136.[doi:10.11992/tis.202006034]
 CUI Tiejun,LI Shasha.System fault entropy model and its time-varying based on linear entropy[J].CAAI Transactions on Intelligent Systems,2021,16(6):1136.[doi:10.11992/tis.202006034]

备注/Memo

备注/Memo:
收稿日期:2020-03-31。
基金项目:国家自然科学基金项目(52004120,51704141); 国家重点研发计划项目(2017YFC1503102); 国家自然科学基金委主任基金项目(61350003)
作者简介:崔铁军,副教授,博士后,主要研究方向为系统可靠性及力学系统稳定性。提出和建立了空间故障树理论及空间故障网络理论。获得多项优秀论文奖,授权发明专利22项,发表学术论文100余篇,出版学术专著4部;李莎莎,讲师,博士,主要研究方向为安全系统工程及安全管理。提出和建立了空间故障树理论及空间故障网络理论。授权发明专利5项,发表学术论文20余篇,出版学术专著2部
通讯作者:崔铁军.E-mail:ctj.159@163.com
更新日期/Last Update: 2020-12-25