[1]刘万军,孟仁杰,曲海成,等.基于增强AlexNet的音乐流派识别研究[J].智能系统学报,2020,15(4):750-757.[doi:10.11992/tis.201909032]
 LIU Wanjun,MENG Renjie,QU Haicheng,et al.Music genre recognition research based on enhanced AlexNet[J].CAAI Transactions on Intelligent Systems,2020,15(4):750-757.[doi:10.11992/tis.201909032]
点击复制

基于增强AlexNet的音乐流派识别研究

参考文献/References:
[1] 邵曦, 姚磊. 基于SVM主动学习的音乐分类[J]. 计算机工程与应用, 2016, 52(6): 127-133
SHAO Xi, YAO Lei. Music classification based on SVM active learning[J]. Computer engineering and applications, 2016, 52(6): 127-133
[2] ALI M A, SIDDIQUI Z A. Automatic music genres classification using machine learning[J]. International journal of advanced computer science and applications, 2017, 8(8): 337-344.
[3] TZANETAKIS G, COOK P. Musical genre classification of audio signals[J]. IEEE transactions on speech and audio processing, 2002, 10(5): 293-302.
[4] MURAUER B, SPECHT G. Detecting music genre using extreme gradient boosting[C]//Companion of the The Web Conference 2018. Lyon, France, 2018: 1923-1927.
[5] 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年:回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716
JIAO Licheng, YANG Shuyuan, LIU fang, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese journal of computers, 2016, 39(8): 1697-1716
[6] DAI Jia, LIANG Shan, XUE Wei, et al. Long short-term memory recurrent neural network based segment features for music genre classification[C]//2016 10th International Symposium on Chinese Spoken Language Processing. Tianjin, China, 2016: 1-5.
[7] JAKUBIK J. Evaluation of gated recurrent neural networks in music classification tasks[C]//International Conference on Information Systems Architecture and Technology. Szklarska Por?ba, Poland, 2017: 27-37.
[8] 马世龙, 乌尼日其其格, 李小平. 大数据与深度学习综述[J]. 智能系统学报, 2016, 11(6): 728-742
MA Shilong, WUNIRI Qiqige, LI Xiaoping. Deep learning with big data: state of the art and development[J]. CAAI transactions on intelligent systems, 2016, 11(6): 728-742
[9] 苗北辰, 郭为安, 汪镭, 等. 隐式特征和循环神经网络的多声部音乐生成系统[J]. 智能系统学报, 2019, 14(1): 158-164
MIAO Beichen, GUO Weian, WANG Lei. A polyphony music generation system based on latent features and a recurrent neural network[J]. CAAI transactions on intelligent systems, 2019, 14(1): 158-164
[10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in neural Information Processing Systems. Lake Tahoe, USA, 2012: 1097-1105.
[11] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer science, 2014: 1409-1556.
[12] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1-9.
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 770-778.
[14] 吴进, 钱雪忠. 紧凑型深度卷积神经网络在图像识别中的应用[J]. 计算机科学与探索, 2019, 13(2): 275-284
WU Jin, QIAN Xuezhong. Compact deep convolutional neural network in image recognition[J]. Journal of frontiers of computer science and technology, 2019, 13(2): 275-284
[15] 吕鸿蒙, 赵地, 迟学斌. 基于增强AlexNet的深度学习的阿尔茨海默病的早期诊断[J]. 计算机科学, 2017, 44(6): 50-60
LYU Hongmeng, ZHAO Di, CHI Xuebin. Deep learning for early diagnosis of Alzheimer’s disease based on intensive AlexNet[J]. Computer science, 2017, 44(6): 50-60
[16] 甘岚, 郭子涵, 王瑶. 基于径向变换和改进AlexNet的胃肿瘤细胞图像识别方法[J]. 计算机应用, 2019, 39(10): 2923-2929
GAN Lan, GUO Zihan, Wang Yao. Gastric tumor cell image recognition method based on radial transformation and improved AlexNet[J]. Journal of computer applications, 2019, 39(10): 2923-2929
[17] 陈思文, 刘玉江, 刘冬, 等. 基于AlexNet模型和自适应对比度增强的乳腺结节超声图像分类[J]. 计算机科学, 2019, 46(6): 146-152
CHEN Siwen, LIU Yujiang, LIU Dong, et al. AlexNet model and adaptive contrast enhancement based ultrasound imaging classification[J]. Computer science, 2019, 46(6): 146-152
[18] 王文秀, 傅雨田, 董峰, 等. 基于深度卷积神经网络的红外船只目标检测方法[J]. 光学学报, 2018, 38(7): 160-166
WANG Wenxiu, FU Yutian, DONG Feng, et al. Infrared ship target detection method based on deep convolution neural network[J]. Acta optica sinica, 2018, 38(7): 160-166
[19] 李祥鹏, 闵卫东, 韩清, 等. 基于深度学习的车牌定位和识别方法[J]. 计算机辅助设计与图形学学报, 2019, 31(6): 979-987
LI Xiangpeng, MIN Weidong, HAN Qing, et al. License plate location and recognition based on deep learning[J]. Journal of computer-aided design & computer graphics, 2019, 31(6): 979-987
[20] 赵远东, 刘振宇, 柯丽, 等. 人脸识别中AlexNet网络设计和改进方法研究[J]. 通信技术, 2019, 52(3): 592-598
ZHAO Yuandong, LIU Zhenyu, Ke li, et al. Alexnet network design and improvement methods in face recogintion[J]. Communications technology, 2019, 52(3): 592-598
[21] 盖杉, 鲍中运. 基于改进深度卷积神经网络的纸币识别研究[J]. 电子与信息学报, 2019, 41(8): 1993-2000
GAI Shan, BAO Zhongyun. Banknote recognition research based on improved deep convolutional neural network[J]. Journal of electronics and information technology, 2019, 41(8): 1993-2000
[22] ZHENG Hao, YANG Zhanlei, LIU Wenju, et al. Improving deep neural networks using softplus units[C]//2015 International Joint Conference on Neural Networks. Killarney, Ireland, 2015: 1-4.
[23] 赵慧珍, 刘付显, 李龙跃. 一种新的深度卷积神经网络的SLU函数[J]. 哈尔滨工业大学学报, 2018, 50(4): 117-123
ZHAO Huizhen, LIU Fuxian, LI Longyue. A novel softplus linear unit for deep CNN[J]. Journal of Harbin institute of technology, 2018, 50(4): 117-123
[24] ELBIR A, ?LHAN H O, SERBES G, et al. Short time Fourier transform based music genre classification[C]//2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting. Istanbul, Turkey, 2018: 1-4.
[25] 毛勇华, 桂小林, 李前, 等. 深度学习技术应用研究[J]. 计算机应用研究, 2016, 33(11): 3201-3205
MAO Yonghua, GUI Xiaolin, LI Qian, et al. Study on application technology of deep learning[J]. Application research of computers, 2016, 33(11): 3201-3205
相似文献/References:
[1]夏洋洋,龚勋,洪西进.人脸识别背后的数据清理问题研究[J].智能系统学报,2017,12(5):616.[doi:10.11992/tis.201706025]
 XIA Yangyang,GONG Xun,HONG Xijin.Research on the data cleansing problem for face recognition technology[J].CAAI Transactions on Intelligent Systems,2017,12():616.[doi:10.11992/tis.201706025]

备注/Memo

收稿日期:2019-09-16。
基金项目:国家自然科学基金青年基金项目(41701479)
作者简介:刘万军,教授,主要研究方向为数字图像处理、运动目标检测与跟踪。主持国家级和省部级科研项目20余项。发表学术论文120余篇;孟仁杰,硕士研究生,主要研究方向为深度学习、自然语言处理;曲海成,副教授,主要研究方向为高光谱遥感图像处理、GPU并行计算。主持辽宁省科技厅和教育厅一般项目各1项,参与国家自然基金项目2项。发表学术论文30余篇
通讯作者:孟仁杰.E-mail:mengrenjie95@163.com

更新日期/Last Update: 2020-07-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134