[1]杨洁,王国胤,张清华.基于知识距离的粗糙粒结构的评价模型[J].智能系统学报,2020,15(1):166-174.[doi:10.11992/tis.201904037]
 YANG Jie,WANG Guoyin,ZHANG Qinghua.Evaluation model of rough granular structure based on knowledge distance[J].CAAI Transactions on Intelligent Systems,2020,15(1):166-174.[doi:10.11992/tis.201904037]
点击复制

基于知识距离的粗糙粒结构的评价模型(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年1期
页码:
166-174
栏目:
人工智能院长论坛
出版日期:
2020-01-01

文章信息/Info

Title:
Evaluation model of rough granular structure based on knowledge distance
作者:
杨洁12 王国胤123 张清华123
1. 重庆邮电大学 计算智能重庆市重点实验室, 重庆 400065;
2. 重庆邮电大学 计算机科学与技术学院, 重庆 400065;
3. 重庆邮电大学 人工智能学院, 重庆 400065
Author(s):
YANG Jie12 WANG Guoyin123 ZHANG Qinghua123
1. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2. School of computer science and technology, Chongqing University of Posts and Telecommunications, Chongqing 4000
关键词:
粗糙粒结构知识距离不确定性度量评价模型粒计算粗糙集约束条件不确定性度量
Keywords:
rough granular structureknowledge distanceuncertainty measureevaluation modelgranular computingrough setsconstraint conditionuncertainty measure
分类号:
TP311
DOI:
10.11992/tis.201904037
摘要:
在粒计算理论中,通过不同的粒计算机制可以生成不同的粒结构。在粗糙集中,对于同一个信息表而言,通过不同的属性添加顺序可以得到由不同的序贯层次结构,即粗糙粒结构。在粗糙粒结构中,不同的属性获取顺序导致了对不确定性问题求解的不同程度。因此,如何有效评价粗糙粒结构是一个值得研究的问题。本文将从知识距离的角度研究这个问题。首先,在前期工作所提出的知识距离框架上提出了一种粗糙近似空间距离,用于度量粗糙近似空间之间差异性。基于提出的知识距离,研究了粗糙粒结构的结构特征。在粗糙粒结构中,在对不确定性问题进行求解时,本文希望在约束条件下可以利用尽可能少的知识空间使不确定性降低达到最大化。基于这个思想并利用以上得出的结论,在属性代价约束条件下,引入了一个评价参数λ,并在此基础建立了一种粗糙粒结构的评价模型,该方法实现了在属性代价约束条件下选择粗糙粒结构的功能。最后,通过实例验证了本文提出的模型的有效性。
Abstract:
In the theory of granular computing (GrC), different granular structures are generated by various grain calculation mechanisms. In rough sets, for the same information table, different attribute adding sequence produces different sequential hierarchical structure, namely the rough granular structure. In rough granular structure, various order of attribute acquisition leads to different effects of solving uncertain problems. This leads to an interesting research topic: how to effectively evaluate the rough granular structures. This problem is solved from the perspective of knowledge distance in the paper. Firstly, the knowledge distance mentioned in our previous works is introduced and then a rough approximation space distance (RASD) is proposed to measure the difference between rough approximate space. On the basis of the knowledge distance mentioned above, the characteristic of rough granular structure (RGS) is investigated. In the rough granular structure, when solving uncertain problem, we expect to to maximize the uncertainty reduction as much as possible by using smaller knowledge space. Then, based on this idea and the above conclusions, an evaluation parameter λ is introduced under the constraint of attribute cost, and further, an evaluation model of rough granular structure is established. This achieves a way to select the rough granular structure according to the constraint. Finally, the effectiveness of this method is verified by an example.

参考文献/References:

[1] ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy sets and systems, 1997, 90(2): 111–127.
[2] PEDRYCZ W, SKOWRON A, KREINOVICH V. Handbook of granular computing[M]. Chichester: John Wiley & Sons, 2008: 719-740.
[3] PEDRYCZ W, AL-HMOUZ R, MORFEQ A, et al. The design of free structure granular mappings: the use of the principle of justifiable granularity[J]. IEEE transactions on cybernetics, 2013, 43(6): 2105–2113.
[4] WANG Guoyin, YANG Jie, XU Ji. Granular computing: from granularity optimization to multi-granularity joint problem solving[J]. Granular computing, 2017, 2(3): 105–120.
[5] YAO Yiyu. Perspectives of granular computing[C]//Proceedings of 2015 IEEE International Conference on Granular Computing. Beijing, China, 2005: 85-90.
[6] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3): 338–353.
[7] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341–356.
[8] 张钹, 张铃. 问题求解理论及应用[M]. 北京: 清华大学出版社, 1990.
[9] 李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展, 1995(6): 15–20
LI Deyi, MENG Haijun, SHI Xuemei. Membership clouds and membership cloud generators[J]. Journal of computer research and development, 1995(6): 15–20
[10] 苗夺谦, 李德毅, 姚一豫, 等. 不确定性与粒计算[M]. 北京: 科学出版社, 2011.
[11] 徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015(8): 1497–1517
XU Ji, WANG Guoyin, YU Hong. Review of big data processing based on granular computing[J]. Chinese journal of computers, 2015(8): 1497–1517
[12] YAO Yiyu. Three-way decisions with probabilistic rough sets[J]. Information sciences, 2010, 180(3): 341–353.
[13] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information sciences, 2010, 180(6): 949–970.
[14] QIAN Yuhua, LIANG Jiye, DANG Chuangyin. Incomplete multigranulation rough set[J]. IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 2010, 40(2): 420–431.
[15] QIAN Yuhua, CHENG Honghong, WANG Jieting, et al. Grouping granular structures in human granulation intelligence[J]. Information sciences, 2017, 382-383: 150–169.
[16] 张钹, 张铃. 问题求解理论及应用[M]. 北京: 清华大学出版社, 1990.
[17] ZHANG Ling, ZHANG Bo. The structure analysis of fuzzy sets[J]. International journal of approximate reasoning, 2005, 40(1/2): 92–108.
[18] ZHANG Ling, ZHANG Bo. Fuzzy reasoning model under quotient space structure[J]. Information sciences, 2005, 173(4): 353–364.
[19] WIERMAN M J. Measuring uncertainty in rough set theory[J]. International journal of general systems, 1999, 28(4/5): 283–297.
[20] LIANG Jiye, CHIN K S, DANG Chuangyin, et al. A new method for measuring uncertainty and fuzziness in rough set theory[J]. International journal of general systems, 2002, 31(4): 331–342.
[21] YAO Yiyu, ZHAO Liquan. A measurement theory view on the granularity of partitions[J]. Information sciences, 2012, 213: 1–13.
[22] LAWVERE F W. Metric spaces, generalized logic, and closed categories[J]. Rendiconti del seminario matematico e fisico di milano, 1973, 43(1): 135–166.
[23] RUBNER Y, GUIBAS L, TOMASI C. The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval[C]//Proceedings of the ARPA Image Understanding Workshop. 1997: 661-668.
[24] RUBNER Y, TOMASI C, GUIBAS L J. The earth mover’s distance as a metric for image retrieval[J]. International journal of computer vision, 2000, 40(2): 99–121.
[25] 郭增晓, 米据生. 粗糙模糊集的模糊性度量[J]. 模糊系统与数学, 2005, 19(4): 135–140
GUO Zengxiao, MI Jusheng. An uncertainty measure in rough fuzzy sets[J]. Fuzzy systems and mathematics, 2005, 19(4): 135–140
[26] QIN Huani, LUO Darong. New uncertainty measure of rough fuzzy sets and entropy weight method for fuzzy-target decision-making tables[J]. Journal of applied mathematics, 2014, 2014: 487036.
[27] HU J, PEDRYCZ W, WANG G. A roughness measure of fuzzy sets from the perspective of distance[J]. International journal of general systems, 2016, 45(3): 352–367.
[28] SUN Bingzhen, MA Weimin. Uncertainty measure for general relation-based rough fuzzy set[J]. Kybernetes, 2013, 42(6): 979–992.
[29] DAI Jianhua, WANG Wentao, XU Qing. An uncertainty measure for incomplete decision tables and its applications[J]. IEEE transactions on cybernetics, 2013, 43(4): 1277–1289.
[30] QIAN Y H, LIANG J Y, DANG C Y, et al. Knowledge granulation and knowledge distance in a knowledge base[J]. International journal of approximate reasoning, 2011, 19(2): 263–264.
[31] QIAN Yuhau, LI Yebin, LIANG Jiye, et al. Fuzzy granular structure distance[J]. IEEE transactions on fuzzy systems, 2015, 23(6): 2245–2259.
[32] LIANG Jiye, LI Ru, QIAN Yuhau. Distance: a more comprehensible perspective for measures in rough set theory[J]. Knowledge-based systems, 2012, 27: 126–136.
[33] YANG Xibei, QIAN Yuhua, YANG Jingyu. On characterizing hierarchies of granulation structures via distances[J]. Fundamenta informaticae, 2013, 123(3): 365–380.
[34] YANG Xibei, SONG Xiaoning, SHE Yanhong, et al. Hierarchy on multigranulation structures: a knowledge distance approach[J]. International journal of general systems, 2013, 42(7): 754–773.
[35] YANG Jie, WANG Guoyin, ZHANG Qinghua. Knowledge distance measure in multigranulation spaces of fuzzy equivalence relations[J]. Information sciences, 2018, 448-449: 18–35.
[36] YANG Jie, WANG Guoyin, LI Xukun. Multi-granularity similarity measure of cloud concept[C]//International Joint Conference on Rough Sets. Santiago, Chile, 2016: 318-330.

备注/Memo

备注/Memo:
收稿日期:2019-04-16。
基金项目:国家自然科学基金项目(61572091);贵州省教育厅科技人才成长项目(KY(2018)No.318)
作者简介:杨洁,副教授,博士,主要研究方向为粒计算、数据挖掘、粗糙集。参与国家自然科学基金项目2项,授权国家发明专利5项。发表学术论文20余篇;王国胤,教授,博士生导师,博士,重庆邮电大学研究生院院长、人工智能学院院长,主要研究方向为粗糙集、粒计算、认知计算、数据挖掘、智能信息处理。主持国家自然科学基金项目 10 余项。入选教育部“长江学者”特聘教授,评为首届“重庆市十大杰出青年群体”、“重庆高校创新团队”、“重庆市首席专家工作室”和“国家级教学团队”;获国家级教学成果二等奖、重庆市自然科学一等奖、重庆市科技进步一等奖、重庆市教学成果一等奖和吴文俊人工智能科学技术奖科技进步一等奖等多项国家级/省部级教学和科技成果奖励。出版著作10余部,发表学术论文300余篇;张清华,教授,博士生导师,博士,主要研究方向为粗糙集、模糊集、粒计算、三支决策。主持国家自然科学基金项目2项。发表学术论文40余篇
通讯作者:杨洁.E-mail:530966074@qq.com
更新日期/Last Update: 1900-01-01