[1]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296-301.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15(2):296-301.[doi:10.11992/tis.201901004]
点击复制

生成对抗网络辅助学习的舰船目标精细识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年2期
页码:
296-301
栏目:
学术论文—机器学习
出版日期:
2020-07-09

文章信息/Info

Title:
Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks
作者:
王昌安 田金文
华中科技大学 多谱信息处理国家级重点实验室, 武汉 湖北 430074
Author(s):
WANG Chang’an TIAN Jinwen
College of Automation, National Key Laboratory of Multispectral Information Processing Technology, Huazhong University of Science and Technology, Wuhan 430074, China
关键词:
遥感图像近岸舰船舰船目标检测舰船识别舰船细粒度分类生成对抗网络深度学习图像处理
Keywords:
remote sensing imageinshore shipsships detectionships classificationfine-grained ships classificationgenerative adversarial networksdeep-learningimage processing
分类号:
TP391
DOI:
10.11992/tis.201901004
摘要:
针对近岸舰船目标细粒度识别的难题,提出了一种利用生成对抗网络辅助学习的任意方向细粒度舰船目标识别框架。通过训练能模仿舰船目标区域的抽象深度特征的生成网络引入生成样本,来辅助分类子网络学习样本空间的流形分布,从而增强细粒度的类别间判别能力。在细粒度类别的近岸舰船数据集上,引入生成对抗网络后的算法识别准确率得到较大提升,平均识别精度提升了2%。消融实验结果表明,利用生成样本辅助训练分类子网络可以有效地提升舰船目标的细粒度识别精度。
Abstract:
To solve the fine-grained inshore ship recognition problem, a multidirectional fine-grained ship recognition framework, which is based on deep-learning generative adversarial networks, is proposed. By training the generation network that can simulate the abstract depth features of the ship target area, the generated samples are used to assist the classification subnetwork in learning the manifold distribution of the sample space. Thus, the fine-grained discriminating power of the classification subnetwork is enhanced. Ablation experiment was conducted on the multi-category fine-grained inshore ship dataset, and the model assisted by generative adversarial networks achieved an average precision rate improvement of 2%. As shown in the comparative experiment, it is beneficial to train the classification subnetwork using the generated samples to solve the fine-grained inshore ship recognition problem.

参考文献/References:

[1] LIN Jiale, YANG Xubo, XIAO Shuangjiu, et al. A line segment based inshore ship detection method[M]//DENG Wei. Future Control and Automation. Berlin, Heidelberg: Springer, 2012: 261-269.
[2] 雷琳, 粟毅. 一种基于轮廓匹配的近岸舰船检测方法[J]. 遥感技术与应用, 2007, 22(5): 622-627
LEI Lin, SU Yi. An inshore ship detection method based on contour matching[J]. Remote sensing technology and application, 2007, 22(5): 622-627
[3] 李毅, 徐守时. 基于支持向量机的遥感图像舰船目标识别方法[J]. 计算机仿真, 2006, 23(6): 180-183
LI Yi, XU Shoushi. A new method for ship target recognition based on support vector machine[J]. Computer simulation, 2006, 23(6): 180-183
[4] LIN Haoning, SHI Zhenwei, ZOU Zhengxia, et al. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images[J]. IEEE geoscience and remote sensing letters, 2017, 14(10): 1665-1669.
[5] YANG Xue, SUN Hao, FU Kun, et al. Automatic ship detection of remote sensing images from google earth in complex scenes based on multi-scale rotation dense feature pyramid networks[J]. arXiv preprint arXiv: 1806.04331, 2018.
[6] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montréal, Canada, 2014: 2672-2680.
[7] XU Suhui, MU Xiaodong, CHAI Dong, et al. Remote sensing image scene classification based on generative adversarial networks[J]. Remote sensing letters, 2018, 9(7): 617-626.
[8] WANG Xiaolong, SHRIVASTAVA A, GUPTA A. A-fast-RCNN: hard positive generation via adversary for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA, 2017: 1063-6919.
[9] MA Jianqi, SHAO Weiyuan, YE Hao, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE transactions on multimedia, 2018, 20(11): 3111-3122.
[10] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440-1448.
[11] CHENG Bowen, WEI Yunchao, SHI Honghui, et al. Revisiting RCNN: on awakening the classification power of faster RCNN[C]//Proceedings of the 15th European Conference on Computer Vision. Munich, Germany, 2018: 473-490.
[12] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv: 1511.06434, 2015.
[13] EVERINGHAM M, VAN GOOL L, WILLIAMS C, et al. The PASCAL visual object classes challenge 2007(VOC2007) results[EB/OL]. University of Oxford, 2007. http://host.robots.ox.ac.uk/pascal/VOC/.
[14] LIAO Minghui, SHI Baoguang, BAI Xiang. TextBoxes++: a single-shot oriented scene text detector[J]. IEEE transactions on image processing, 2018, 27(8): 3676-3690.
[15] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montréal, Canada, 2015: 91-99.
[16] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.

相似文献/References:

[1]刘富,于鹏,刘坤.采用独立分量分析Zernike矩的遥感图像飞机目标识别[J].智能系统学报,2011,6(01):51.
 LIU Fu,YU Peng,LIU Kun.Research concerning aircraft recognition of remote sensing images based on ICA Zernike invariant moments[J].CAAI Transactions on Intelligent Systems,2011,6(2):51.
[2]龙海侠,吴淑雷,吕雁.基于多样性变异的QPSO算法的遥感图像分类[J].智能系统学报,2015,10(6):938.[doi:10.11992/tis.201507045]
 LONG Haixia,WU Shulei,LYU Yan.Classification of multispectral remote sensing image based on QPSO and diversity-mutation[J].CAAI Transactions on Intelligent Systems,2015,10(2):938.[doi:10.11992/tis.201507045]
[3]吴诗婳,吴一全,周建江.直线截距直方图城区遥感图像多阈值分割[J].智能系统学报,2018,13(02):227.[doi:10.11992/tis.201609012]
 WU Shihua,WU Yiquan,ZHOU Jianjiang.Multi-level thresholding for remote sensing image of urban area based on line intercept histogram[J].CAAI Transactions on Intelligent Systems,2018,13(2):227.[doi:10.11992/tis.201609012]
[4]李亚飞,董红斌.基于卷积神经网络的遥感图像分类研究[J].智能系统学报,2018,13(04):550.[doi:10.11992/tis.201706078]
 LI Yafei,DONG Hongbin.Classification of remote-sensing image based on convolutional neural network[J].CAAI Transactions on Intelligent Systems,2018,13(2):550.[doi:10.11992/tis.201706078]

备注/Memo

备注/Memo:
收稿日期:2019-01-06。
基金项目:国家自然科学基金项目(61273279)
作者简介:王昌安,硕士研究生,主要研究方向为遥感图像处理、计算机视觉;田金文,教授,博士生导师,中国电子学会高级会员。主要研究方向为计算机视觉及其应用、机器学习及其应用、自动目标识别及应用、遥感图像信息处理、目标光学特性建模与成像仿真。主持国家自然科学基金项目1项,国家863项目多项,发表学术论文20余篇
通讯作者:田金文.E-mail:jwtian@mail.hust.edu.cn
更新日期/Last Update: 1900-01-01