[1]于建均,李晨,左国玉,等.仿人机器人步态平衡泛化模型的建立与仿真[J].智能系统学报,2020,15(3):537-545.[doi:10.11992/tis.201810017]
 YU Jianjun,LI Chen,ZUO Guoyu,et al.Modeling and simulation of humanoid robot gait balance generalization[J].CAAI Transactions on Intelligent Systems,2020,15(3):537-545.[doi:10.11992/tis.201810017]
点击复制

仿人机器人步态平衡泛化模型的建立与仿真(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年3期
页码:
537-545
栏目:
学术论文—机器学习
出版日期:
2020-05-05

文章信息/Info

Title:
Modeling and simulation of humanoid robot gait balance generalization
作者:
于建均 李晨 左国玉 阮晓刚 王洋
北京工业大学 信息学部,北京 100124
Author(s):
YU Jianjun LI Chen ZUO Guoyu RUAN Xiaogang WANG Yang
Department of Information, Beijing University of Technology, Beijing 100124, China
关键词:
仿人机器人支持向量回归步态平衡泛化模型鲸鱼优化算法ZMP信息算法复杂度NAO机器人机器学习
Keywords:
humanoid robotsupport vector regressiongait balance generalization modelwhale optimization algorithmZMP informationalgorithm complexityNAO robotmachine learning
分类号:
TP242.6
DOI:
10.11992/tis.201810017
摘要:
通过人体示教计算零力矩点(zero moment point, ZMP),并通过补偿关节角度对其矫正的方法可以解决机器人步行不稳定的问题,但仍存在算法复杂度过高等问题。本文提出一种人体示教与机器学习相结合的方法,基于支持向量回归算法建立机器人的步态平衡泛化模型,通过该模型可以实现对模型输入人体示教的关节角度和ZMP信息后直接得到经稳定性补偿的关节角度,并以此驱动机器人完成步行动作。引入鲸鱼优化算法(whale optimization algorithm, WOA)优化模型的参数以使模型得到最优的泛化效果,完善步态平衡模型的性能。WEBOTS仿真平台下,使用模型输出的补偿后的关节角度驱动NAO机器人,其动作自然、稳定且算法复杂度较低,验证了本文方法的可行性。
Abstract:
The problem of robot walking instability can be solved by calculating the zero-moment point (ZMP) through human body teaching and correction by the compensation of joint angles; however, problems such as high algorithm complexity still exist. This paper proposes a method that combines human teaching with machine learning. The gait balance generalization model of a robot is established based on the support vector regression algorithm. The joint angle of human teaching and ZMP information are inputted into the model; then, we get the joint angle compensated by stability, and the robot is driven to complete the walking action. The parameters of the whale optimization algorithm (WOA) model are introduced to make the model obtain the optimal generalization effect and improve the performance of the gait balance model. Under the Webots simulation platform, the NAO robot is driven by the compensated joint angle of the model output. The action is natural and stable, and the algorithm complexity is low, which verifies the feasibility of the method.

参考文献/References:

[1] WANG Fei, WANG Yaning, WEN Shiguang, et al. Nao humanoid robot gait planning based on the linear inverted pendulum[C]//Proceedings of 2012 24th Chinese Control and Decision Conference. Taiyuan, China, 2012: 986-990.
[2] DONG Enzeng, WANG Dandan, CHEN Chao, et al. Realization of biped robot gait planning based on NAO robot development platform[C]//Proceedings of 2016 IEEE International Conference on Mechatronics and Automation. Harbin, China, 2016: 1073-1077.
[3] ZHANG Ying, LI Shuanghong, HAN Boyu, et al. Research on gait planning and inverse kinematics solving of biped walking robots[C]//Proceedings of 2015 8th International Symposium on Computational Intelligence and Design. Hangzhou, China, 2015: 629-632.
[4] KHAZENIFARD A, BAHRAMI F, ANDANI M E, et al. An energy efficient gait trajectory planning algorithm for a seven linked biped robot using movement elements[C]//Proceedings of 2015 23rd Iranian Conference on Electrical Engineering. Tehran, Iran, 2015: 1006-1011.
[5] 付根平, 杨宜民, 黄春林. 基于粒子群优化算法的双足机器人步态优化[J]. 华中科技大学学报(自然科学版), 2011, 39(S2): 355-358
FU Genping, YANG Yimin, HUANG Chunlin. Walking pattern optimization based on particle swarm optimization for biped robot[J]. Journal of Huazhong University of Science and Technology (nature science edition), 2011, 39(S2): 355-358
[6] YAMAGUCHI A, HYON S H, OGASAWARA T. Reinforcement learning for balancer embedded humanoid locomotion[C]//Proceedings of 2010 10th IEEE-RAS International Conference on Humanoid Robots. Nashville, USA, 2010: 308-313.
[7] KANG Zhongrun, DENG Muqing, WANG Cong. Frontal-view human gait recognition based on kinect Features and deterministic learning[C]//Proceedings of 2017 36th Chinese Control Conference. Dalian, China, 2017: 10834-10839.
[8] SELEEM I A, ASSAL S F M. Sliding mode control of underactuated five-link biped robot for climbing stairs based on real human data[C]//Proceedings of 2017 IEEE International Conference on Industrial Technology. Toronto, Canada, 2017: 878-883.
[9] 赵姝颖, 徐文杰, 郑雪林, 等. 基于体感的机器人展示系统研究与开发[J]. 机器人技术与应用, 2012(6): 54-57
ZHAO Shuying, XU Wenjie, ZHENG Xuelin, et al. Research and development of display system of Nao humanoid robot based on posture perception[J]. Robot technique and application, 2012(6): 54-57
[10] 于建均, 门玉森, 阮晓钢, 等. 基于Kinect的Nao机器人动作模仿系统的研究与实现[J]. 智能系统学报, 2016, 11(2): 180-187
YU Jianjun, MEN Yusen, RUAN Xiaogang, et al. The research and implementation of behavior imitation system about Nao robot based on Kinect[J]. CAAI transactions on intelligent systems, 2016, 11(2): 180-187
[11] SELEEM I A, ASSAL S F M, MOHAMED A M. Cyclic gait planning and control of underactuated five-link biped robot during single support and impact phases for normal walking[C]//Proceedings of 2018 IEEE International Conference on Industrial Technology. Lyon, France, 2018: 123-128.
[12] LIN Jinling, HWANG K S, JIANG Weicheng, et al. Gait balance and acceleration of a biped robot based on Q-learning[J]. IEEE access, 2016, 4: 2439-2449.
[13] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[14] 于建均, 张远, 左国玉, 等. 基于ZMP判据的仿人机器人步态模仿[J]. 北京工业大学学报, 2018, 44(9): 1187-1192
YU Jianjun, ZHANG Yuan, ZUO Guoyu, et al. Humanoid robot gait imitation based on ZMP criterion[J]. Journal of Beijing University of Technology, 2018, 44(9): 1187-1192
[15] ALZAQEBAH A, MASADEH R, HUDAIB A. Whale optimization algorithm for requirements prioritization[C]//Proceedings of 2018 9th International Conference on Information and Communication Systems. Irbid, Jordan, 2018: 84-89.
[16] FERREIRA J P, CRISóSTOMO M, COIMBRA A P. SVR control of the sagittal balance of a biped robot combining torso and ankle joints[C]//Proceedings of 2010 World Automation Congress. Kobe, Japan, 2010: 1-9.
[17] DING Zhen, YANG Chifu, XING Kai, et al. The real time gait phase detection based on long short-term memory[C]//Proceedings of 2018 IEEE Third International Conference on Data Science in Cyberspace. Guangzhou, China, 2018: 33-38.
[18] 雷森, 史振威, 石天阳, 等. 基于递归神经网络的风暴潮增水预测[J]. 智能系统学报, 2017, 12(5): 640-644
LEI Sen, SHI Zhenwei, SHI Tianyang, et al. Prediction of storm surge based on recurrent neural network[J]. CAAI transactions on intelligent systems, 2017, 12(5): 640-644
[19] FENG Yang, LI Yuncheng, LUO Jiebo, et al. Learning effective Gait features using LSTM[C]//Proceedings of 2016 23rd International Conference on Pattern Recognition. Cancun, Mexico, 2016: 325-330.

相似文献/References:

[1]陈雯柏,高世杰,吴细宝.基于HMCD的仿人机器人单杠运动控制策略[J].智能系统学报,2012,7(06):501.
 CHEN Wenbai,GAO Shijie,WU Xibao.HMCD based dynamic motion control strategy of humanoid robot on a horizontal bar[J].CAAI Transactions on Intelligent Systems,2012,7(3):501.

备注/Memo

备注/Memo:
收稿日期:2018-10-16。
基金项目:国家自然科学基金项目(61873008);北京市自然科学基金项目(4182008)
作者简介:于建均,副教授,主要研究方向为智能机器人的仿生自主控制、智能计算与智能优化控制、复杂过程建模、优化与控制。主持或参与国家“863”计划项目、国家自然科学基金项目以及横向科研课题多项。获国家发明专利、实用新型专利、国家软件著作权等10余项,发表学术论文40余篇;李晨,硕士研究生,主要研究方向为机器学习、机器人技术;左国玉,副教授,博士,主要研究方向为智能技术系统、机器人学习、机器人控制、计算智能。主持和参与国家自然科学基金项目、北京市自然科学基金项目、北京市教委科技计划7项。获国家发明专利、实用新型专利10余项,发表学术论文30余篇
通讯作者:于建均.E-mail:yujianjun@bjut.edu.cn
更新日期/Last Update: 1900-01-01