[1]吴青,王乐,刘佳仑.自主水面货船研究现状与展望[J].智能系统学报,2019,14(01):57-70.[doi:10.11992/tis.201806028]
 WU Qing,WANG Le,LIU Jialun.Research status and prospects of autonomous surface cargo ships[J].CAAI Transactions on Intelligent Systems,2019,14(01):57-70.[doi:10.11992/tis.201806028]
点击复制

自主水面货船研究现状与展望(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年01期
页码:
57-70
栏目:
出版日期:
2019-01-05

文章信息/Info

Title:
Research status and prospects of autonomous surface cargo ships
作者:
吴青1 王乐1 刘佳仑23
1. 武汉理工大学 物流工程学院, 湖北 武汉 430063;
2. 武汉理工大学 智能交通系统研究中心, 湖北 武汉 430063;
3. 国家水运安全工程技术研究中心, 湖北 武汉 430063
Author(s):
WU Qing1 WANG Le1 LIU Jialun23
1. School of Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China;
2. Intelligent Transport System Research Center, Wuhan University of Technology, Wuhan 430063, China;
3. National Engineering Research Center for Water Transport Safety, Wuhan 430063, China
关键词:
海事自主水面船舶自主水面货船测试场系统组成智能船舶等级划分水路载运工具发展
Keywords:
maritime autonomous surface shipsautonomous surface cargo shipstest areasystem compositionclassification of smart shipdevelopment of waterborne vehicles
分类号:
U675.79;TP18
DOI:
10.11992/tis.201806028
摘要:
船舶智能化、自主化是水路载运工具的重要发展趋势,与此同时,船舶设计、制造、运营、维护等相关领域也迎来了新一轮的挑战。基于国际海事组织(international maritime organization,IMO)提出的海事自主水面船舶(maritime autonomous surface ships,MASS)概念,对其中自主水面货船进行阐述。首先对水路载运工具进行详细分类,分析了当前自主水面货船的特点及当前的研究现状。之后提出自主水面货运船舶系统组成,思考自主水面货船在实船试验、推进方式与能源、智能航行、通信系统、航行规则等方面中面临的挑战,并直面挑战对海事自主航行水面货船未来发展及应用的多样性做出展望。
Abstract:
Intellectualization and autonomy of ships are important development trends of waterway vehicles. Ship design, manufacture, operation, maintenance, and other related fields have ushered in a new round of challenges. On the basis of the concept of Maritime Autonomous Surface Ships proposed by the International Maritime Organization, this article elaborates on maritime autonomous surface cargo ships. First, waterway vehicles are classified in detail, and the characteristics and current research status of autonomous surface cargo ships are analyzed. The system composition of autonomous surface cargo ships is proposed, and the challenges faced by autonomous surface cargo ships are considered in aspects of ship trials, propulsion mode and energy, intelligent navigation, communication system, and navigation rules. Confronting these challenges, the future development of autonomous surface cargo ships and the diversity of its applications are predicted.

参考文献/References:

[1] International Maritime Organization. Maritime safety committee (MSC), 98th session, 7-16 June 2017[EB/OL].[2017-06-16]. http://www.imo.org/en/MediaCentre/MeetingSummaries/MSC/Pages/MSC-98th-session.aspx.
[2] 中国船级社. IMO海上安全委员会第98届会议(MSC98)要点快报[J]. 船舶标准化工程师, 2017, 50(4):10 China Classification Society. Flash report of the 98th session of the IMO maritime safety committee (MSC98)[J]. Ship standardization engineer, 2017, 50(4):10
[3] US Department of the Navy. The navy unmanned surface vehicle (USV) master plan[S]. Washington, DC:US Department of the Navy, 2007.
[4] 中国船级社. GD24-2017, 无人水面艇检验指南[S]. 北京:中国船级社, 2018.
[5] 胡甚平, 方泉根, 乔归民, 等. 大型船舶航行的风险分析与风险控制[J]. 中国航海, 2006(3):34-38 HU Shenping, FANG Quangen, QIAO Guimin, et al. Risk assessment and risk control options of ship navigation[J]. Navigation of China, 2006(3):34-38
[6] 郑恒, 白雪. 解秘"无人船"的前世今生[J]. 上海信息化, 2015(4):24-27 ZHENG Heng, BAI Xue. The past life of the unmanned surface vessels[J]. Shanghai informatization, 2015(4):24-27
[7] MOTWANI A. A survey of uninhabited surface vehicles[R]. MIDAS. SMSE. 2012. TR. 001. United Kingdom:MIDAS, 2012.
[8] 海天. 未来海战的杀手锏新概念武器之无人水面艇[J]. 舰载武器, 2006(3):77-83 HAI Tian. New concept weapons in the future warfare[J]. Shipborne weapons, 2006(3):77-83
[9] 何萍, 阳明, 马悦. 全球海战机器人[M]. 北京:解放军出版社, 2012.
[10] STATHEROS T, HOWELLS G, MAIER M D. Autonomous ship collision avoidance navigation concepts, technologies and techniques[J]. The journal of navigation, 2008, 61(1):129-142.
[11] BERTRAM V. Unmanned surface vehicles-a survey[R]. Copenhagen, Denmark:Skibsteknisk Selskab, 2008:1-4.
[12] YANG Wenrong, CHEN C Y, HSU C M, et al. Multifunctional inshore survey platform with unmanned surface vehicles[J]. International journal of automation and smart technology, 2011, 1(2):19-25.
[13] 朱炜, 张磊. 现代水面无人艇技术[J]. 造船技术, 2017(2):1-6 ZHU Wei, ZHANG Lei. Development of unmanned surface vehicle[J]. Marine technology, 2017(2):1-6
[14] 云州智能科技. 南极, 我们来啦!——云洲无人艇挺进南极[EB/OL].[2017-12-01]. http://www.yunzhou-tech.com/News/detail/id/276.html.
[15] PORATHE T. Maritime unmanned navigation through intelligence in networks:the MUNIN project[R]. 2013:177-183.
[16] JOKIOINEN E. Remote and autonomous ships the next steps[R]. London:AAWA, 2016.
[17] Rolls Royce. Rolls-royce demonstrates world’s first remotely operated commercial vessel[EB/OL].[2017-06-20]. https://www.rolls-royce.com/media/our-stories/press-releases/2017/20-06-2017-rr-demonstrates-worlds-first-remotely-operated-commercial-vessel.aspx.
[18] 国际船舶网. 澳洲矿业集团研发超大型自动航行无人散货船[EB/OL].[2017-06-13]. http://www.hellosea.net/usv/focus/2017-06-13/41685.html. Eworldship. Com. Australian mining group develops super large automatic navigation unmanned bulk carriers[EB/OL].[2017-06-13]. http://www.hellosea.net/usv/focus/2017-06-13/41685.html.
[19] TOMMI ARO, LAURI HEISKARI. Challenges of unmanned vessels[D]. University of Applied Sciences, 2017.
[20] 国际船舶网. 全球首艘无人海工船即将开建[EB/OL].[2016-11-02]. http://www.eworldship.com/html/2016/NewShipUnderConstrunction_1102/121485.html.
[21] JOHNSON J. Battery-powered, autonomous barges coming to European ports[EB/OL].[2018-01-25]. https://www.imarest.org/themarineprofessional/item/3988-battery-powered-autonomous-barges-coming-to-european-ports.
[22] IMO. IMO takes first steps to address autonomous ships[EB/OL].[2018-05-25]. http://www.imo.org/en/MediaCentre/PressBriefings/Pages/08-MSC-99-MASS-scoping.aspx.
[23] CCS中国船级社. CCS发布《智能船舶规范》[EB/OL].[2015-12-02]. http://www.ccs.org.cn/ccswz/font/fontAction!article.do?articleId=ff808081511f069e01515b18eba4029c.
[24] 美通社. 无人货运船开发联盟在沪成立海航科技引领航运业变革[EB/OL].[2017-06-28]. https://www.prnasia.com/story/181504-1.shtml.
[25] 倪梦璟. 全球首艘智能船中國造智慧船舶時代到來[EB/OL].[2017-12-05]. http://news.wenweipo.com/2017/12/05/IN1712050048.htm.
[26] 佚名. 全球首艘无人货船"筋斗云"明年在中国下水[J]. 珠江水运, 2017(23):42-43 ANONYM. The world’s first unmanned cargo ship "JINDOU Cloud" will be launched in China next year[J]. Pearl river water transport, 2017(23):42-43
[27] 中国船舶网. 中远海运首艘两万标箱集装箱船"中远海运白羊座"号首航比利时[EB/OL].[2018-03-02]. http://www.cnshipnet.com/news/13/64456.html.
[28] Lloyd’s Register. First ever container ship to receive cyber enabled ship descriptive[EB/OL].[2018-01-16]. https://www.lr.org/en/latest-news/first-ever-container-ship-to-receive-cyber-enabled-ship/.
[29] DIMECC. One sea ecosystem[EB/OL].[2016-09-30]. https://www.dimecc.com/dimecc-services/one-sea-ecosystem/.
[30] Norwegian Forum for Autonomous Ships. Norwegian forum for autonomous ships (NFAS)[EB/OL].[2016-10-04]. http://nfas.autonomous-ship.org/index-en.html.
[31] Norwegian Maritime Authority. World’s first test area for autonomous ships opened[EB/OL].[2016-10-03]. https://www.sdir.no/en/news/news-from-the-nma/worlds-first-test-area-for-autonomous-ships-opened/.
[32] INAS. International network for autonomous ships[EB/OL].[2017-10-30]. http://www.autonomous-ship.org/index.html.
[33] World Maritime News. Norway sets up second test area for unmanned ships[EB/OL].[2017-10-02]. https://worldmaritimenews.com/archives/231317/norway-sets-up-second-test-area-for-unmanned-ships/.
[34] World Maritime News. Norway opens new test area for autonomous ships[EB/OL].[2017-12-07]. https://worldmaritimenews.com/archives/237297/norway-opens-new-test-area-for-autonomous-ships/.
[35] NFAS. Test area Grenland[EB/OL].[2017-12-22]. http://nfas.autonomous-ship.org/projects-en.html.
[36] 刘铁忠. 大型船舶在浅窄水域航行的风险控制[J]. 中国远洋航务, 2016(3):82-83 LIU Tiezhong. Risk control of large ships sailing in shallow waters[J]. Marine China, 2016(3):82-83
[37] LIU Jialun, HEKKENBERG R. Sixty years of research on ship rudders:effects of design choices on rudder performance[J]. Ships and offshore structures, 2017, 12(4):495-512.
[38] 严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6):807-817 YAN Xinping, LIU Chenguang. Review and prospect for intelligent waterway transportation system[J]. CAAI transactions on intelligent systems, 2016, 11(6):807-817
[39] 马枫. 内河AIS船台设备的开发与应用研究[D]. 武汉:武汉理工大学, 2010. MA Feng. The research on the development and application of AIS equipment in in-land rivers[D]. Wuhan:Wuhan University of Technology, 2010.
[40] WOLF M T, ASSAD C, KUWATA Y, et al. 360-degree visual detection and target tracking on an autonomous surface vehicle[J]. Journal of field robotics, 2010, 27(6):819-833.
[41] THAKUR A, SVEC P, GUPTA S K. GPU based generation of state transition models using simulations for unmanned surface vehicle trajectory planning[J]. Robotics and autonomous systems, 2012, 60(12):1457-1471.
[42] ELKINS L, SELLERS D, MONACH W R. The Autonomous Maritime Navigation (AMN) project:field tests, autonomous and cooperative behaviors, data fusion, sensors, and vehicles[J]. Journal of field robotics, 2010, 27(6):790-818.
[43] MA Feng, WU Qing, YAN Xinping, et al. Classification of automatic radar plotting aid targets based on improved fuzzy c-means[J]. Transportation research part C:emerging technologies, 2015, 51:180-195.
[44] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012:1097-1105.
[45] 曾青山, 陈景锋, 黄加亮. 基于图像识别的智能船舶安检辅助系统构想[J]. 中国海事, 2017(10):35-37 ZENG Qingshan, CHEN Jingfeng, HUANG Jialiang. The image of intelligent ship safety inspection assist system on the base of image spot[J]. China maritime safety, 2017(10):35-37
[46] 刘睿强. 深度学习算法在船舶电子海图识别中的应用[J]. 舰船科学技术, 2017, 39(4):79-81 LIU Ruiqiang. Application of depth learning algorithm in ship electronic chart recognition[J]. Ship science and technology, 2017, 39(4):79-81
[47] WAIBEL A. Modular construction of time-delay neural networks for speech recognition[M]. Cambridge, USA:MIT Press, 1989.
[48] PALAZ D, DOSS M M, COLLOBERT R. Analysis of CNN-based speech recognition system using raw speech as input[C]//Proceedings of the Interspeech 201516th Annual Conference of the International Speech Communication Association. 2015:11-15.
[49] RAVANELLI M. Deep learning for distant speech recognition[J]. arXiv:1712.06086, 2017.
[50] 刘佩林, 张钰玲. 基于卷积神经网络的语音识别分析[J]. 电脑迷, 2017(1):120 LIU Peilin, ZHANG Yuling. Speech recognition analysis based on convolutional neural network[J]. PC fan, 2017(1):120
[51] BUI V P, KIM Y B, CHOI Y W, et al. A study on automatic ship berthing system design[C]//Proceedings of 2009 International Conference on Networking, Sensing and Control. Okayama, Japan, 2009:181-184.
[52] VAN BUI P, KIM Y B. Development of constrained control allocation for ship berthing by using autonomous tugboats[J]. International journal of control, automation and systems, 2011, 9(6):1203-1208.
[53] BUI V P, JI S W, JANG J S, et al. Ship trajectory tracking in harbour area by using autonomous tugboats[J]. IFAC proceedings volumes, 2012, 45(13):740-745.
[54] BUI V P, JI S W, CHOI K H, et al. Nonlinear observer and sliding mode control design for dynamic positioning of a surface vessel[C]//Proceedings of the 201212th International Conference on Control, Automation and Systems. JeJu Island, South Korea, 2012:1900-1904.
[55] 严新平, 吴超, 马枫. 面向智能航行的货船"航行脑"概念设计[J]. 中国航海, 2017, 40(4):95-98, 136 YAN Xinping, WU Chao, MA Feng. Conceptual design of navigation brain system for intelligent cargo ship[J]. Navigation of China, 2017, 40(4):95-98, 136
[56] 李瑞. 基于DSP和GPRS的无人船运动控制系统设计[D]. 保定:河北大学, 2016. LI Rui. Design of unmanned ship motion control system based on DSP and GPRS[D]. Baoding:Hebei University, 2016.
[57] 李峰. 无人驾驶水样采集船关键技术研究[D]. 济南:山东大学, 2016. LI Feng. The key technology research of unmanned surface vehicle[D]. Jinan:Shandong University, 2016.
[58] 沈航, 韦燕华, 陈超, 等. 无人船中控系统及远程监控系统的研究和设计[J]. 机电工程技术, 2016(S2):325-328 SHEN Hang, WEI Yanhua, CHEN Chao, et al. Research and design of unmanned ship central control system and remote monitoring system[J]. Mechanical and electrical engineering technology, 2016(S2):325-328
[59] 江丽君, 邱铖铖, 郑卫刚. 基于互联网+的无人环保船舶系统设计与研究[J]. 变频器世界, 2017(1):96-97 JIANG Lijun, QIU Chengcheng, ZHENG Weigang. A research and design of unmanned ship based on internet+environmental protection system[J]. The world of inverters, 2017(1):96-97
[60] 崔亚妮, 任佳, 杜文才, 等. 多无人船通信网络拓扑优化控制算法[J]. 控制理论与应用, 2016, 33(12):1639-1649 CUI Yani, REN Jia, DUI Wencai, et al. Network topology optimization control algorithm for multiple unmanned surface vehicle[J]. Control theory and applications, 2016, 33(12):1639-1649
[61] FAN Ailong, YIN Qizhi, YAN Xinping, et al. Study of energy efficient navigation method for inland ship:a cruise ship case[C]//Proceedings of 2015 International Conference on Transportation Information and Safety. Wuhan, China, 2015.
[62] United States Department of Defense. Unmanned systems integrated roadmap. FY2013-2038[R]. Washington, USA:Office of the Secretary of Defense, 2013.

备注/Memo

备注/Memo:
收稿日期:2018-06-14。
基金项目:国家自然科学基金项目(5170090515).
作者简介:吴青,女,1962年生,教授,博士生导师,主要研究方向为水路交通安全与信息化。主持及参与国家、省部级重点基金项目30余项。曾获中国人民解放军科技进步三等奖、湖北省科技进步二等奖、湖北省教学成果一等奖、国家级教学成果二等奖。发表学术论文50余篇;王乐,女,1990年生,博士研究生,主要研究方向为智能船舶控制;刘佳仑,男,1987年生,副研究员,博士,湖北省楚天学者计划楚天学子,主要研究方向为船舶操纵性预测与船舶自主运动控制。
通讯作者:刘佳仑.E-mail:jialunliu@whut.edu.cn
更新日期/Last Update: 1900-01-01