[1]魏文戈,谭晓阳.密集堆叠下的高相似度木块横截面检测[J].智能系统学报,2019,14(4):642-649.[doi:10.11992/tis.201806001]
 WEI Wenge,TAN Xiaoyang.Highly similar wood blocks detection under dense stacking[J].CAAI Transactions on Intelligent Systems,2019,14(4):642-649.[doi:10.11992/tis.201806001]
点击复制

密集堆叠下的高相似度木块横截面检测

参考文献/References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:580-587.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1440-1448.
[3] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015:91-99.
[4] HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision. Venice, Italy, 2017:2980-2988.
[5] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//European Conference on Computer Vision. Zurich, Switzerland, 2014:346-361.
[6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:Single shot multibox detector[C]//European Conference on Computer Vision. Amsterdam, The Netherlands, 2016:21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:779-788.
[8] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[J]. arXiv:1612.08242, 2016.
[9] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2):154-171.
[10] 于文勇, 王立海, 杨慧敏, 等. 超声波木材缺陷检测若干问题的探讨[J]. 森林工程, 2006, 22(6):7-9 YU Wenyong, WANG Lihai, YANG Huimin, et al. The study of wood defects detection based on ultrasonic techniques[J]. Forest engineering, 2006, 22(6):7-9
[11] 杨春梅, 胡万义, 白帆, 等. 木材缺陷检测理论及方法的发展[J]. 林业机械与木工设备, 2004, 32(3):8-10 YANG Chunmei, HU Wanyi, BAI Fan, et al. The development of theory and method in assaying wood defection[J]. Forestry machinery and woodworking equipment, 2004, 32(3):8-10
[12] 戴天虹, 李琳, 解朦. 基于四元数矩阵奇异值分解的木材缺陷检测分析[J]. 森林工程, 2014, 30(1):52-55, 59 DAI Tianhong, LI Lin, XIE Meng. Wood defect detection and analysis based on quaternion matrix singular value decomposition[J]. Forest engineering, 2014, 30(1):52-55, 59
[13] 梁善庆, 蔡智勇, 王喜平, 等. 北美木材无损检测技术的研究与应用[J]. 木材工业, 2008, 22(3):5-8 LIANG Shanqing, CAI Zhiyong, WANG Xiping, et al. Developments and applications of nondestructive tests for wood in North America[J]. China wood industry, 2008, 22(3):5-8
[14] 戚大伟, 牟洪波. 基于Hu不变矩和BP神经网络的木材缺陷检测[J]. 东南大学学报(自然科学版), 2013, 43(S1):63-66 QI Dawei, Mu Hongbo. Detection of wood defects types based on Hu invariant moments and BP neural network[J]. Journal of Southeast University (natural science edition), 2013, 43(S1):63-66
[15] 戚大伟, 牟洪波. 人工神经网络在木材缺陷检测中的应用[J]. 森林工程, 2006, 22(1):21-23 QI Dawei, MU Hongbo. Application of artificial neural networks in the testing of wood defects[J]. Forest engineering, 2006, 22(1):21-23
[16] 牟洪波. 基于人工神经网络的木材缺陷检测研究[D]. 哈尔滨:东北林业大学, 2006. MU Hongbo. Study on wood defects testing based on artificial neural network[D]. Harbin:Northeast Forestry University, 2006.
[17] 夏春江, 王培良, 张媛. 基于深度学习的木材含水率预测[J]. 杭州电子科技大学学报(自然科学版), 2015, 35(1):31-35 XIA Chunjiang, WANG Peiliang, ZHANG Yuan. Prediction of moisture content of wood based on deep learning[J]. Journal of Hangzhou Dianzi University (natural sciences), 2015, 35(1):31-35
[18] 崔金刚. 图像处理技术在木材检测方面的应用[D]. 哈尔滨:东北林业大学, 2007. CUI Jingang. The digital image processing using on wood detests testing[D]. Harbin:Northeast Forestry University, 2007.
[19] 戚大伟, 乔景禄, 张杰. 图象处理技术在木材年轮检测中的应用[J]. 东北林业大学学报, 1994, 22(2):106-111 QI Dawei, QIAO Jinglu, ZHANG Jie. Image processing technique on wooden annual rings x-ray picture[J]. Journal of Northeast Forestry University, 1994, 22(2):106-111
[20] 徐华东, 王立海, 倪松远. 模态分析技术在木材性质检测中应用的研究进展[J]. 森林工程, 2007, 23(6):15-17 XU Huadong, WANG Lihai, NI Songyuan. Literature review on application of modal analysis technology in the wood testing[J]. Forest engineering, 2007, 23(6):15-17
[21] 杨学春, 王立海. 应力波技术在木材性质检测中的研究进展[J]. 森林工程, 2002, 18(6):11-12 YANG Xuechun, WANG Lihai. Research progress of testing timber characteristics by using stress wave technique[J]. Forest engineering, 2002, 18(6):11-12
[22] 冯海林, 李光辉, 方益明, 等. 应力波传播模型及其在木材检测中的应用[J]. 系统仿真学报, 2010, 22(6):1490-1493 FENG Hailin, LI Guanghui, FANG Yiming, et al. Stress wave propagation modeling and application in wood testing[J]. Journal of system simulation, 2010, 22(6):1490-1493
[23] 韩书霞, 于雷, 孔超, 等. 基于计算机断层扫描技术的木材密度检测研究[J]. 森林工程, 2007, 23(1):19-23 HAN Shuxia, YU Lei, KONG Chao, et al. Research on wood density testing based on computer tomography technology[J]. Forest engineering, 2007, 23(1):19-23
[24] 王立海, 孙天用. 木材腐朽检测及防治的研究进展[J]. 黑龙江大学工程学报, 2011, 2(2):63-69 WANG Lihai, SUN Tianyong. Research on progressing of testing and prevention of wood decay[J]. Journal of Engineering of Heilongjiang University, 2011, 2(2):63-69
[25] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:770-778.
[26] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:936-944.
[27] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//18th International Conference on Pattern Recognition. Hong Kong, China, 2006:850-855.
[28] XIE Saining, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:5987-5995.

备注/Memo

收稿日期:2018-06-01。
基金项目:国家自然科学基金项目(61672280,61373060,61732006).
作者简介:魏文戈,男,1993年生,硕士研究生,主要研究方向为图像识别和深度学习;谭晓阳,男,1971年生,教授,主要研究方向为模式识别、计算机视觉和机器学习。中国计算机学会会员,中国计算机学会计算机视觉专业组委员,中国计算机学会人工智能与模式识别专委会委员,江苏省计算机协会人工智能专委会委员。主持多项科研项目,曾获国际电气与电子工程师协会信号处理协会最佳论文奖、教育部自然科学奖二等奖、国家自然科学奖二等奖、教育部自然科学奖一等奖、国际学术期刊《Pattern Recognition》 2006-2010 年度高引用论文奖等。发表学术论文50余篇,被引用近5000次。
通讯作者:谭晓阳.E-mail:x.tan@nuaa.edu.cn

更新日期/Last Update: 2019-08-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134