[1]裴小兵,于秀燕.改进猫群算法求解置换流水车间调度问题[J].智能系统学报,2019,14(4):769-778.[doi:10.11992/tis.201804016]
 PEI Xiaobing,YU Xiuyan.Improved cat swarm optimization for permutation flow shop scheduling problem[J].CAAI Transactions on Intelligent Systems,2019,14(4):769-778.[doi:10.11992/tis.201804016]
点击复制

改进猫群算法求解置换流水车间调度问题

参考文献/References:
[1] GAREY M R, JOHNSON D S, SETHI R. The complexity of flowshop and jobshop scheduling[J]. Mathematics of operations research, 1976, 1(2):117-129.
[2] 李小缤, 白焰, 耿林霄. 求解置换流水车间调度问题的改进遗传算法[J]. 计算机应用, 2013, 33(12):3576-3579 LI Xiaobin, BAI Yan, GENG Linxiao, et al. Improved genetic algorithm for solving permutation flow shop scheduling problem[J]. Journal of computer applications, 2013, 33(12):3576-3579
[3] CHU Shuchuan, TSAI P W, PAN J S. Cat swarm optimization[C]//Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence. Guilin, China, 2006, 4099:854-858.
[4] GANAPATI P, PRADHAN P M, MAJHI B. ⅡR system identification using cat swarm optimization[J]. Expert systems with applications, 2011, 38(10):12671-12683.
[5] PRADHAN P M, PANDA G. Solving multiobjective problems using cat swarm optimization[J]. Expert systems with applications, 2012, 39(3):2956-2964.
[6] GUO Lei, MENG Zhuo, SUN Yize, et al. A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition[J]. Energy, 2018, 144:501-514.
[7] PAPPULA L, GHOSH D. Cat swarm optimization with normal mutation for fast convergence of multimodal functions[J]. Applied soft computing, 2018, 66:473-491.
[8] TSAI P W, PAN J S, CHEN S M, et al. Parallel cat swarm optimization[C]//Proceedings of 2008 International Conference on Machine Learning and Cybernetics. Kunming, China, 2008:3328-3333.
[9] 刘琼, 范正伟, 张超勇, 等. 基于多目标猫群算法的混流装配线排序问题[J]. 计算机集成制造系统, 2014, 20(2):333-342 LIU Qiong, FAN Zhengwei, ZHANG Chaoyong, et al. Mixed model assembly line sequencing problem based on multi-objective cat swarm optimization[J]. Computer integrated manufacturing system, 2014, 20(2):333-342
[10] BOUZIDI A, RIFFI M E. Cat swarm optimization to solve flow shop scheduling problem[J]. Journal of theoretical and applied information technology, 2015, 72(2):239-243.
[11] BOUZIDI A, RIFFI M E. Cat swarm optimization to solve job shop scheduling problem[C]//Proceedings of the Third IEEE International Colloquium in Information Science and Technology. Tetouan, Morocco, 2015:202-205.
[12] 马邦雄, 叶春明. 利用猫群算法求解流水车间调度问题[J]. 现代制造工程, 2014(6):12-15, 71 MA Bangxiong, YE Chunming. The research of flow-shop scheduling problem based on cat swarm optimization[J]. Modern manufacturing engineering, 2014(6):12-15, 71
[13] 陶新民, 徐鹏, 刘福荣, 等. 组合分布估计和差分进化的多目标优化算法[J]. 智能系统学报, 2013, 8(1):39-45 TAO Xinmin, XU Peng, LIU Furong, et al. Multi-objective optimization algorithm composed of estimation of distribution and differential evolution[J]. CAAI transactions on intelligent systems, 2013, 8(1):39-45
[14] TZENG Y R, CHEN C L, CHEN C L. A hybrid EDA with ACS for solving permutation flow shop scheduling[J]. The international journal of advanced manufacturing technology, 2012, 60(9/10/11/12):1139-1147.
[15] CHANG P C, HUANG W H, TING C J. Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems[J]. Expert systems with applications, 2010, 37(3):1863-1878.
[16] KIM D, HALDAR J P. Greedy algorithms for nonnegativity-constrained simultaneous sparse recovery[J]. Signal processing, 2016, 125:274-289.
[17] CHANG P C, CHEN Menghui. A block based estimation of distribution algorithm using bivariate model for scheduling problems[J]. Soft computing, 2014, 18(6):1177-1188.
[18] RAUTRAY R, BALABANTARAY R C. Cat swarm optimization based evolutionary framework for multi document summarization[J]. Physica a:statistical mechanics and its applications, 2017, 477:174-186.
[19] CARLIER J. Ordonnancements à contraintes disjonctives[J]. RAIRO-operations research, 1978, 12(4):333-350.
[20] REEVES C R. A genetic algorithm for flowshop sequencing[J]. Computers and operations research, 1995, 22(1):5-13.
[21] LIU Hongcheng, GAO Liang, PAN Quanke. A hybrid particle swarm optimization with estimation of distribution algorithm for solving permutation flowshop scheduling problem[J]. Expert systems with applications, 2011, 38(4):4348-4360.

备注/Memo

收稿日期:2018-04-13。
基金项目:国家创新方法工作专项项目(2017IM010800).
作者简介:裴小兵,男,1965年生,教授,博士,天津工业工程学会理事,主要研究方向为生产调度、系统仿真。发表学术论文30余篇;于秀燕,女, 1992年生,硕士研究生,主要研究方向为生产调度、系统仿真。
通讯作者:于秀燕.E-mail:Yu_xiuyan1026@163.com

更新日期/Last Update: 2019-08-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134