[1]雷芳,熊建斌,张磊,等.金属腐蚀区域图像增强算法研究[J].智能系统学报,2019,14(02):385-392.[doi:10.11992/tis.201712024]
 LEI Fang,XIONG Jianbin,ZHANG Lei,et al.Image enhancement algorithm in metal corrosion area[J].CAAI Transactions on Intelligent Systems,2019,14(02):385-392.[doi:10.11992/tis.201712024]
点击复制

金属腐蚀区域图像增强算法研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年02期
页码:
385-392
栏目:
出版日期:
2019-03-05

文章信息/Info

Title:
Image enhancement algorithm in metal corrosion area
作者:
雷芳1 熊建斌2 张磊1 郭斯羽3
1. 广东石油化工学院 计算机与电子信息学院, 广东 茂名 525000;
2. 广东技术师范学院 自动化学院, 广东 广州 510665;
3. 湖南大学 电气与信息工程学院, 湖南 长沙 410082
Author(s):
LEI Fang1 XIONG Jianbin2 ZHANG Lei1 GUO Siyu3
1. College of Computer and Electronic Information, Guangdong University of Petrochemical Technology, Maoming 525000, China;
2. School of Automation, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
3. School of Electrical and Information Engineering, Hu’nan University, Changsha 410082, China
关键词:
金属腐蚀图像HSI模型多尺度细节自适应增强分块同态滤波
Keywords:
metal corrosion imageHSI modelmulti-scaledetail-adaptive enhancementblock homomorphic filtering
分类号:
TP391
DOI:
10.11992/tis.201712024
摘要:
针对金属腐蚀区域图像中存在暗细节对比度不高、光照不均匀及颜色特征需保护的问题,提出一种在HSI模型下的多尺度细节自适应增强与同态滤波的增强算法。首先,对RGB腐蚀图像进行色彩空间变换,保留其中的色调和饱和度分量不变,对亮度分量进行增强。然后,通过小波变换进行多尺度细节自适应增强,提升细节对比度并作分块同态滤波,改善光照不均的影响,获得增强后的腐蚀图像。实验结果表明,所提方法增加了腐蚀暗细节的对比度,提高了金属腐蚀区域图像的整体亮度并保证了色彩信息的不失真。
Abstract:
Considering the images of the metal corrosion areas, the dark details have low contrast, and the illumination is not uniform; meanwhile, the color characteristics need to be preserved. To solve these problems, an approach based on multi-scale detail-adaptive enhancement and homomorphic filtering is proposed on the basis of the HSI model. First, the RGB corrosion image was color-transformed, whereby the hue and saturation components were preserved, and the luminance component was enhanced. Then, wavelet transform was used to implement multi-scale detail-adaptive enhancement, increase the contrast of the detail, and apply block homomorphic filtering, so as to improve the impact of non-uniform illumination. Consequently, the corrosion image was enhanced. Experimental results show that the proposed method can increase the contrast of dark details and improve the overall brightness of the image of the metal corrosion area, ensuring that the color information is undistorted.

参考文献/References:

[1] MEDEIROS F N S, RAMALHO G L B, BENTO M P, et al. On the evaluation of texture and color features for nondestructive corrosion detection[J]. EURASIP journal on advances in signal processing, 2010, 2010:817473.
[2] 纪钢, 彭丽丽, 王平. 基于腐蚀产物颜色分析的材料腐蚀程度评定方法[J]. 重庆理工大学学报(自然科学版), 2012, 26(7):69-73 JI Gang, PENG Lili, WANG Ping. Research on the method for evaluation of material corrosion degree based on color analysis of corrosion products[J]. Journal of Chongqing University of Technology (natural science), 2012, 26(7):69-73
[3] IDRIS S A, JAFER F A. Image enhancement filter evaluation on corrosion visual inspection[M]//SULAIMAN H A, OTHMAN M A, OTHMAN M F I, et al. Advanced Computer and Communication Engineering Technology. Cham:Springer, 2015:651-659.
[4] HE Kaiming, SUN Jian, TANG Xiaoou. Guided image filtering[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(6):1397-1409.
[5] PIDAPARTI R M, HINDERLITER B, MASKEY D. Evaluation of corrosion growth on SS304 based on textural and color features from image analysis[J]. ISRN corrosion, 2013, 2013:376823.
[6] ROBERGE P R. Corrosion inspection and monitoring[M]. Hoboken, N.J.:John Wiley & Sons, 2007:1-50.
[7] 毛东月, 谢正祥, 贺向前, 等. 自适应双向保带宽对数变换及低照度图像增强[J]. 中国图象图形学报, 2017, 22(10):1356-1363 MAO Dongyue, XIE Zhengxiang, HE Xiangqian, et al. Adaptive bilateral logarithm transformation with bandwidth preserving and low-illumination image enhancement[J]. Journal of image and graphics, 2017, 22(10):1356-1363
[8] SINGH K, KAPOOR R. Image enhancement using exposure based sub image histogram equalization[J]. Pattern recognition letters, 2014, 36:10-14.
[9] 汪林林, 余梅, 安超. 模糊多尺度Retinex彩色图像增强[J]. 计算机工程与应用, 2012, 48(7):1343-1346 WANG Linlin, YU Mei, AN Chao. Color image enhancement based on fuzzy multiple-scale Retinex[J]. Computer engineering and applications, 2012, 48(7):1343-1346
[10] 汪荣贵, 朱静, 杨万挺, 等. 基于照度分割的局部多尺度Retinex算法[J]. 电子学报, 2010, 38(5):1181-1186 WANG Ronggui, ZHU Jing, YANG Wanting, et al. An improved local multi-scale retinex algorithm based on illuminance image segmentation[J]. Acta electronica sinica, 2010, 38(5):1181-1186
[11] 汪荣贵, 周良, 张新龙, 等. 基于Retinex的JPEG图像增强新方法[J]. 中国图象图形学报, 2011, 16(12):2124-2132 WANG Ronggui, ZHOU Liang, ZHANG Xinlong, et al. Novel JPEG image enhancement method based on Retinex theory[J]. Journal of image and graphics, 2011, 16(12):2124-2132
[12] XIAO Limei, LI Ce, WU Zongze, et al. An enhancement method for X-ray image via fuzzy noise removal and homomorphic filtering[J]. Neurocomputing, 2016, 195:56-64.
[13] 张亚飞, 谢明鸿. 基于分块DCT同态滤波的彩色图像增强算法[J]. 计算机工程与设计, 2013, 34(5):1752-1756 ZHANG Yafei, XIE Minghong. Block-DCT based homomorphic filtering algorithm for color image enhancement[J]. Computer engineering and design, 2013, 34(5):1752-1756
[14] 马金祥, 范新南, 吴志祥, 等. 暗通道先验的大坝水下裂缝图像增强算法[J]. 中国图象图形学报, 2016, 21(12):1574-1584 MA Jinxiang, FAN Xinnan, WU Zhixiang, et al. Underwater dam crack image enhancement algorithm based on improved dark channel prior[J]. Journal of image and graphics, 2016, 21(12):1574-1584
[15] 王建新, 张有会, 王志巍, 等. 基于HSI颜色空间的单幅图像去雾算法[J]. 计算机应用, 2014, 34(10):2990-2995 WANG Jianxin, ZHANG Youhui, WANG Zhiwei, et al. Single image defogging algorithm based on HSI color space[J]. Journal of computer applications, 2014, 34(10):2990-2995
[16] 秦绪佳, 王慧玲, 杜轶诚, 等. HSV色彩空间的Retinex结构光图像增强算法[J]. 计算机辅助设计与图形学学报, 2013, 25(4):488-493 QIN Xujia, WANG Huiling, DU Yicheng, et al. Structured light image enhancement algorithm based on retinex in HSV color space[J]. Journal of computer-aided design & computer graphics, 2013, 25(4):488-493
[17] HE Kaiming, SUN Jian, TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(12):2341-2353.
[18] 孙慧贤, 罗飞路, 张玉华. 基于小波变换和同态滤波的内窥图像增强算法[J]. 探测与控制学报, 2008, 30(5):68-72 SUN Huixian, LUO Feilu, ZHANG Yuhua. A new homomorphic filtering based on wavelet transform for endoscope image enhancement[J]. Journal of detection & control, 2008, 30(5):68-72
[19] 徐涛, 李冠章. 基于小波变换的彩色图像自适应细节增强算法[J]. 计算机应用与软件, 2011, 28(3):240-242, 295 XU Tao, LI Guanzhang. Adaptive detail enhancement algorithm of colour image based on wavelet transform[J]. Computer applications and software, 2011, 28(3):240-242, 295
[20] 冈萨雷斯R C, 伍兹R E. 数字图像处理[M]. 阮秋琦, 译. 2版. 北京:电子工业出版社, 2003.
[21] TONG Hanghang, LI Mingjing, ZHANG Hongjiang, et al. Blur detection for digital images using wavelet transform[C]//Proceedings of 2004 IEEE International Conference on Multimedia and Expo (ICME). Taipei, Taiwan, 2004.
[22] 肖俊, 宋寿鹏, 丁丽娟. 空域同态滤波算法研究[J]. 中国图象图形学报, 2008, 13(12):2302-2306 XIAO Jun, SONG Shoupeng, DING Lijuan. Research on the fast algorithm of spatial homomorphic filtering[J]. Journal of image and graphics, 2008, 13(12):2302-2306
[23] 赵晓丽, 孙宪坤. 基于视觉特性的彩色图像增强算法研究[J]. 计算机工程与设计, 2009, 30(19):4458-4460 ZHAO Xiaoli, SUN Xiankun. Color image enhancement algorithm based on human visual system[J]. Computer engineering and design, 2009, 30(19):4458-4460
[24] 周西柳, 章洁. 基于聚类余弦变换的图像增强算法研究[J]. 计算机仿真, 2012, 29(2):216-219 ZHOU Xiliu, ZHANG Jie. Image blur based on DCT and clustering algorithm[J]. Computer simulation, 2012, 29(2):216-219

备注/Memo

备注/Memo:
收稿日期:2017-12-26。
基金项目:国家自然科学基金项目(61473331,61471167,61571147);茂名市科技计划工业攻关项目(660509);广东石油化工学院自然科学青年基金项目(650150).
作者简介:雷芳,女,1986年生,硕士研究生,讲师,主要研究方向为图像处理与模式识别。以第一作者发表学术论文数篇,主持市级与校级科技项目2项。;熊建斌,男,1976年生,副教授,博士,主要研究方向为数据融合与故障诊断。发表学术论文30余篇,主持国家、省部级项目15项。;张磊,女,1973年生,教授,博士,主要研究方向为视频图像处理。发表学术论文20余篇,主持国家自然科学基金项目2项。
通讯作者:张磊.E-mail:zhanglei@gdupt.edu.cn
更新日期/Last Update: 2019-04-25