[1]陈肖蒙,王瑜,肖洪兵.基于可变局部边缘模式的绿色植物物种识别[J].智能系统学报,2018,13(04):571-576.[doi:10.11992/tis.201709024]
 CHEN Xiaomeng,WANG Yu,XIAO Hongbing.Identification of green plant species based on varied local edge patterns[J].CAAI Transactions on Intelligent Systems,2018,13(04):571-576.[doi:10.11992/tis.201709024]
点击复制

基于可变局部边缘模式的绿色植物物种识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年04期
页码:
571-576
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Identification of green plant species based on varied local edge patterns
作者:
陈肖蒙 王瑜 肖洪兵
北京工商大学 计算机与信息工程学院, 北京 100048
Author(s):
CHEN Xiaomeng WANG Yu XIAO Hongbing
School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China
关键词:
可变局部边缘模式边缘特征提取植物物种识别
Keywords:
varied local edge patternsextraction of edge featureidentification of plant species
分类号:
TP317.41
DOI:
10.11992/tis.201709024
摘要:
绿色植物物种识别在生态环境保护、中药制取、农业与园艺应用等方面有着重要的应用前景和潜在的经济价值。边缘是一种直观、简单、有效的对象识别特征,文中针对传统边缘算子方向少,尺度单一,操作不灵活等缺点,使用一种具有多尺度、多方向属性的圆形局部边缘模式算子(varied local edge pattern,VLEP)提取植物图像的边缘特征,同时考虑阈值细分的思想,在自建的绿色植物物种数据库上进行的实验结果表明,该算法不仅可以弥补传统算子由于边缘方向少、尺度单一导致丢失边缘信息的缺陷,同时可以有效用于绿色植物物种识别。
Abstract:
The identification of green plant species has the potential for important applications and economic value in many respects, such as protection of the environmental ecology and preparation of traditional Chinese medicine, as well as agricultural and horticultural applications. The edge of an object is an intuitive, simple, and effective object recognition feature. To overcome the shortcomings of traditional edge operators, such as few directions, single scale, and inflexible operation, in this paper, we propose a green-plant-species recognition algorithm based on circular local edge patterns, which has multiple scales and multiple directional features. We conducted a series of experiments to consider threshold subdivisions in the self-built green-plant-species database. The results show that the proposed algorithm effectively complements the edge information that is lost by the fewer edge directions and single scale of traditional edge operators, and can be effectively applied to identify green plant species.

参考文献/References:

[1] 胡秋萍. 基于叶片形状特征的植物识别技术研究[D]. 西安:西安电子科技大学, 2014. HU Qiuping. The study of plant identification technology based on leaves’ shape features[D]. Xi’an:Xidian University, 2014.
[2] 叶绪伦, 赵杰煜, 陈能仑. 结合LDA主题模型的植物叶片形状描述及分类[J]. 模式识别与人工智能, 2016, 29(3):263-271. YE Xulun, ZHAO Jieyu, CHEN Nenglun. Leaf shape description and classification with LDA topic mode[J]. Pattern recognition and artificial intelligence, 2016, 29(3):263-271.
[3] 刘骥, 曹凤莲, 甘林昊. 基于叶片形状特征的植物识别方法[J]. 计算机应用, 2016, 36(s2):200-202. LIU Ji, CAO Fenglian, GAN Linhao. Plant identification method based on leaf shape features[J]. Journal of computer applications, 2016, 36(s2):200-202.
[4] SHRIVAKSHAN G T, CHANDRASEKAR C. A comparison of various edge detection techniques used in image processing[J]. International journal of computer science issues, 2012, 9(5):269-276.
[5] KAUR K, MALHOTRA S. A survey on edge detection using different techniques[J]. International journal of application or innovation in engineering & management, 2013, 2(4):496-500.
[6] ONN U, SINGLA P. A survey on conventional edge detection techniques[J]. Journal of algebra, 2014, 397:1-17.
[7] BERZINS V. Accuracy of Laplacian edge detectors[J]. Computer vision, graphics, and image processing, 1984, 27(2):195-210.
[8] DUDA R O, HART P E. Pattern classification and scene analysis[M]. New York:Wiley, 1973.
[9] MAINI R, SOHAL J S. Performance evaluation of Prewitt edge detector for noisy images[J]. GVIP journal, 2006, 6(3):39-46.
[10] OGAWA K, ITO Y, NAKANO K. Efficient Canny edge detection using a GPU[C]//2010 First International Conference on Networking and Computing. Hangzhou, China, 2010:279-280.
[11] VOLLMER J, MENCL R, MÜLLER H. Improved Laplacian smoothing of noisy surface meshes[J]. Computer graphics forum, 2010, 18(3):131-138.
[12] HUSSEIN W B, MOATY A A, HUSSEIN M A, et al. A novel edge detection method with application to the fat content prediction in marbled meat[J]. Pattern recognition, 2011, 44(12):2959-2970.
[13] DI Haibin, GAO Dengliang. Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement[J]. Computers & geosciences, 2014, 72:192-200.
[14] GAO Wenshuo, ZHANG Xiaoguang, YANG Lei, et al. An improved Sobel edge detection operator[C]//20103rd IEEE International Conference on Computer Science and Information Technology. Chengdu, China, 2010:67-71.
[15] WANG Yu, ZHAO Yongsheng, CAI Qiang, et al. A varied local edge pattern descriptor and its application to texture classification[J]. Journal of visual communication and image representation, 2016, 34:108-117.

备注/Memo

备注/Memo:
收稿日期:2017-09-15。
基金项目:国家自然科学基金面上项目(61671028);北京市自然科学基金面上项目(4162018);北京市委组织部“高创计划”青年拔尖人才培养资助项目(2014000026833ZK14);北京市属高等学校高层次人才引进与培养计划项目(CIT&TCD201504010).
作者简介:陈肖蒙,女,1994年出生,硕士研究生,主要研究方向为图像处理、模式识别;王瑜,女,1977年出生,博士,副教授,硕士生导师,CCF会员,主要研究方向为图像处理、模式识别;肖洪兵,男,1967年出生,博士,副教授,主要研究方向为图像处理、传感器与高动态测试技术。
通讯作者:王瑜.E-mail:wangyu@btbu.edu.cn.
更新日期/Last Update: 2018-08-25