[1]李海林,梁叶.标签传播时间序列聚类的股指期货套期保值策略研究[J].智能系统学报,2019,14(2):288-295.[doi:10.11992/tis.201707023]
 LI Hailin,LIANG Ye.Research on the stock index futures hedging strategy using label propagation time series clustering[J].CAAI Transactions on Intelligent Systems,2019,14(2):288-295.[doi:10.11992/tis.201707023]
点击复制

标签传播时间序列聚类的股指期货套期保值策略研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年2期
页码:
288-295
栏目:
学术论文—智能系统
出版日期:
2019-03-05

文章信息/Info

Title:
Research on the stock index futures hedging strategy using label propagation time series clustering
作者:
李海林12 梁叶1
1. 华侨大学 信息管理系, 福建 泉州 362021;
2. 华侨大学 现代应用统计与大数据研究中心, 福建 厦门 361021
Author(s):
LI Hailin12 LIANG Ye1
1. Department of Information Systems, Huaqiao University, Quanzhou 362021, China;
2. Research Center of Applied Statistics and Big Data, Huaqiao University, Xiamen 361021, China
关键词:
标签传播时间序列聚类动态时间弯曲套期保值
Keywords:
label propagationtime seriesclusteringdynamic time warpinghedging
分类号:
TP391
DOI:
10.11992/tis.201707023
摘要:
利用时间序列聚类方法进行股指期货的套期保值,关键要选择合适的聚类方法。本文从新的视角来研究并提高时间序列聚类方法在金融数据分析领域的应用性能,提出一种基于标签传播时间序列聚类的股指期货套期保值模型。该模型以动态时间弯曲为相似性度量方法来构建现货股票网络空间结构,将每只股票看作一个节点,利用标签传播方法将节点划分到不同的簇中,最终实现股票数据聚类。另外,构建最小追踪误差优化模型来确定每支股票在现货组合中的最优权重,从而得到最优组合。实验分别比较新方法和传统聚类方法确定现货组合的追踪误差,结果表明新方法能够提高现货组合的追踪精度,为丰富金融市场投资和管理方式提供新的研究思路。
Abstract:
Choosing a suitable clustering method is crucial in using time series clustering in stock index futures hedging. This study aims to investigate and improve the application performance of time series clustering in the financial data analysis field from a new perspective. We propose a model of stock index futures hedging based on label propagation time series clustering. In the model, a network space of spot stock was built using dynamic time warping as similarity measure. Each stock in the network was treated as a node, which would be divided into different clusters using label propagation, and finally, the stock data was clustered successfully. An optimization model for minimizing tracking error was constructed to obtain the optimal weight of each stock in the spot portfolio. Finally, we obtained the optimal spot portfolio. The tracking errors of the portfolio of the proposed method and that of the traditional clustering method were compared by tracking the index in the experiment. The proposed method showed the ability to improve tracking accuracy, providing a new way to enrich the investment and management of financial market.

参考文献/References:

[1] 柴尚蕾, 郭崇慧, 徐旭. 股指期货套利中的最优现货组合构建策略研究[J]. 运筹与管理, 2012, 21(2):154-161 CHAI Shanglei, GUO Chonghui, XU Xu. Optimal spot portfolio construction strategy in stock index futures arbitrage[J]. Operations research and management science, 2012, 21(2):154-161
[2] 郑尊信. 股指期货持有成本模型的修正与比较[J]. 哈尔滨工业大学学报, 2009, 41(2):248-250 ZHENG Zunxin. Modification and comparison of cost-of-carry model of index futures[J]. Journal of Harbin Institute of Technology, 2009, 41(2):248-250
[3] 韩立岩, 任光宇. 基于已实现二阶矩预测的期货套期保值策略及对股指期货的应用[J]. 系统工程理论与实践, 2012, 32(12):2629-2636 HAN Liyan, REN Guangyu. Hedging strategy with futures based on prediction of realized second moment:An application to stock index futures[J]. Systems engineering-theory and practice, 2012, 32(12):2629-2636
[4] HOU Yang, LI S. Hedging performance of Chinese stock index futures:an empirical analysis using wavelet analysis and flexible bivariate GARCH approaches[J]. Pacific-basin finance journal, 2013, 24:109-131.
[5] SU E D. Stock index hedging using a trend and volatility regime-switching model involving hedging cost[J]. International review of economics and finance, 2017, 47:233-254.
[6] TRABELSI N, NAIFAR N. Are Islamic stock indexes exposed to systemic risk? Multivariate GARCH estimation of CoVaR[J]. Research in international business and finance, 2017, 42:727-744.
[7] 苏治, 蔡腾腾, 马泽伟. 一种改进的不完全指数复制方法[J]. 数量经济技术经济研究, 2013, 30(6):149-160 SU Zhi, CAI Tengteng, MA Zewei. An improved solution for incomplete index tracking problem[J]. The journal of quantitative & technical economics, 2013, 30(6):149-160
[8] 倪禾. 基于启发式遗传算法的指数追踪组合构建策略[J]. 系统工程理论与实践, 2013, 33(10):2645-2653 NI He. Heuristic genetic algorithm for optimizing an index tracking portfolio[J]. Systems engineering-theory and practice, 2013, 33(10):2645-2653
[9] 胡春萍, 薛宏刚, 徐凤敏. 基于时间加权SVM的指数优化复制模型与实证分析[J]. 系统工程理论与实践, 2014, 34(9):2193-2201 HU Chunping, XUE Honggang, XU Fengmin. An stock index replicating model based on time weighted SVM and it’s empirical analysis[J]. System engineering-theory and practice, 2014, 34(9):2193-2201
[10] 刘睿智, 周勇. 指数跟踪投资组合与多信息下指数可预测性——基于Adaptive LASSO和ARIMA-ANN方法[J]. 系统工程, 2015, 33(4):1-7 LIU Ruizhi, ZHOU Yong. The portfolio of index tracing and index predictability under multi-information-Based on adaptive LASSO and ARIMA-ANN method[J]. Systems engineering, 2015, 33(4):1-7
[11] CHEN Chen, KWON R H. Robust portfolio selection for index tracking[J]. Computers and operations research, 2012, 39(4):829-837.
[12] GUASTAROBA G, SPERANZA M G. Kernel search:An application to the index tracking problem[J]. European journal of operational research, 2012, 217(1):54-68.
[13] FILIPPI C, GUASTAROBA G, SPERANZA M G. A heuristic framework for the bi-objective enhanced index tracking problem[J]. Omega, 2016, 65:122-137.
[14] DOSE C, CINCOTTI S. Clustering of financial time series with application to index and enhanced index tracking portfolio[J]. Physica A:statistical mechanics and its applications, 2005, 355(1):145-151.
[15] NANDA S R, MAHANTY B, TIWARI M K. Clustering Indian stock market data for portfolio management[J]. Expert systems with applications, 2010, 37(12):8793-8798.
[16] LEMIEUX V, RAHMDEL P S, WALKER R, et al. Clustering techniques and their effect on portfolio formation and risk analysis[C]//Proceedings of the International Workshop on Data Science for Macro-Modeling. Snowbird, UT, USA, 2014:1-6.
[17] FERREIRA L N, ZHAO Liang. Time series clustering via community detection in networks[J]. Information sciences, 2016, 326:227-242.
[18] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical review E:covering statistical, nonlinear, biological, and soft matter physics, 2007, 76(3):036106.
[19] SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE transactions on acoustics, speech, and signal processing, 1978, 26(1):43-49.
[20] 李海林, 梁叶. 基于数值符号和形态特征的时间序列相似性度量方法[J]. 控制与决策, 2017, 32(3):451-458 LI Hailin, LIANG Ye. Similarity measure based on numerical symbolic and shape feature for time series[J]. Control and decision, 2017, 32(3):451-458
[21] LI H. Accurate and efficient classification based on common principal components analysis for multivariate time series[J]. Neurocomputing, 2016, 171:744-753.
[22] CHEN Yanping, KEOGH E, HU Bing, et al. The UCR time series classification archive[EB/OL]. 2015. (2015–07-01)[2015–12-01]. http://www.cs.ucr.edu/~eamonn/time_series_data/.

相似文献/References:

[1]李海林,梁叶.分段聚合近似和数值导数的动态时间弯曲方法[J].智能系统学报,2016,11(2):249.[doi:10.11992/tis.201507064]
 LI Hailin,LIANG Ye.Dynamic time warping based on piecewise aggregate approximation and data derivatives[J].CAAI Transactions on Intelligent Systems,2016,11(2):249.[doi:10.11992/tis.201507064]
[2]彭昱忠,元昌安,李洁,等.个体最优共享GEP算法及其气象降水数据预测建模[J].智能系统学报,2016,11(3):401.[doi:10.11992/tis.201603035]
 PENG Yuzhong,YUAN Changan,LI Jie,et al.Individual optimal sharing GEP algorithm and its application in forecast modeling of meteorological precipitation[J].CAAI Transactions on Intelligent Systems,2016,11(2):401.[doi:10.11992/tis.201603035]
[3]李海林,龙芳菊.基于同步频繁树的时间序列关联规则分析[J].智能系统学报,2021,16(3):502.[doi:10.11992/tis.202008012]
 LI Hailin,LONG Fangju.Association rules analysis of time series based on synchronization frequent tree[J].CAAI Transactions on Intelligent Systems,2021,16(2):502.[doi:10.11992/tis.202008012]

备注/Memo

备注/Memo:
收稿日期:2017-07-11。
基金项目:国家自然科学基金项目(71771094,61300139);福建省社科规划项目(FJ2017B065);福建省高校新世纪优秀人才支持计划项目(Z1625112);华侨大学中青年教师科研提升计划项目(ZQN-PY220).
作者简介:李海林,男,1982年生,教授,博士,主要研究方向为数据挖掘与决策支持。主持2项国家自然科学基金和4项省部级基金,发表学术论文50余篇,其中被SCI检索11篇,被EI检索20余篇。;梁叶,女,1992年生,硕士研究生,主要研究方向为金融时间序列数据挖掘。发表学术论文5篇。
通讯作者:李海林.E-mail:hailin@mail.dlut.edu.cn
更新日期/Last Update: 2019-04-25