[1]景坤雷,赵小国,张新雨,等.具有Levy变异和精英自适应竞争机制的蚁狮优化算法[J].智能系统学报,2018,13(02):236-242.[doi:10.11992/tis.201706091]
 JING Kunlei,ZHAO Xiaoguo,ZHANG Xinyu,et al.Ant lion optimizer with levy variation and adaptive elite competition mechanism[J].CAAI Transactions on Intelligent Systems,2018,13(02):236-242.[doi:10.11992/tis.201706091]
点击复制

具有Levy变异和精英自适应竞争机制的蚁狮优化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年02期
页码:
236-242
栏目:
出版日期:
2018-04-15

文章信息/Info

Title:
Ant lion optimizer with levy variation and adaptive elite competition mechanism
作者:
景坤雷12 赵小国123 张新雨12 刘丁12
1. 西安理工大学 晶体生长设备及系统集成国家地方联合工程研究中心, 陕西 西安 710048;
2. 陕西省复杂系统控制与智能信息处理重点实验室, 陕西 西安 710048;
3. 西安建筑科技大学 机电工程学院, 陕西 西安 710055
Author(s):
JING Kunlei12 ZHAO Xiaoguo123 ZHANG Xinyu12 LIU Ding12
1. National & Local Joint Engineering Research Center of Crystal Growth Equipment and System Integration, Xi’an University of Technology, Xi’an 710048, China;
2. Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, X
关键词:
蚁狮优化算法Levy变异精英自适应竞争收敛速度硅单晶参数辨识
Keywords:
ant lion optimizerLevy variationadaptive elite competitionconvergence speedparameters identification
分类号:
TP18
DOI:
10.11992/tis.201706091
摘要:
针对蚁狮优化算法易陷入局部最优、收敛速度慢的缺点,本文提出一种具有Levy变异和精英自适应竞争机制的蚁狮优化算法。利用服从Levy分布的随机数对种群较差个体进行变异,可改善种群多样性提高算法的全局搜索能力;精英自适应竞争机制使得多个精英并行带领种群寻优,提高了算法的收敛速度,为避免较大计算量,并行竞争的精英个数会随着寻优代数增加而减少。同多个改进算法进行比较,结果表明本文所提算法具有更好的寻优精度和收敛速度。最后将本文改进算法应用于硅单晶热场温度模型的参数辨识,仿真结果说明该算法具有较好的参数辨识能力。
Abstract:
The ant lion optimizer (ALO) reveals such deficiencies as easily relapsing into local optimum and low convergence speed. This paper proposed an improved ALO algorithm with Levy variation and adaptive elite competition mechanism. By carrying out Levy variation to poor individuals, the diversity of population and the global search ability of the algorithm can be increased. Moreover, the adaptive elite competition mechanism that many elites lead the population to search at the same time can improve the convergence speed of the algorithm. To reduce the amount of calculation, the number of the elites competing in parallel will decrease with the increase of iterations. By contrast with other improved optimization algorithms, the test results show that the improved algorithm proposed in this paper has better search precision and convergence speed. Finally, this improved algorithm is applied to identify parameters of silicon single crystal thermal field temperature model and the simulation results prove its excellent ability of parameters identification.

参考文献/References:

[1] MIRJALILI S. The ant lion optimizer[J]. Advances in engineering software, 2015, 83: 80-98.
[2] SAXENA P, KOTHARI A. Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays[J]. AEU-International journal of electronics and communications, 2016, 70(9): 1339-1349.
[3] HADIDIAN-MOGHADDAM M J, ARABI-NOWDEH S, BIGDELI M, et al. A multi-objective optimal Sizing and siting of distributed generation using ant lion optimization technique[J]. Ain shams engineering journal, 2017, doi: 10.1016/j.asej.2017.03.001.
[4] RAJU M, SAIKIA L C, SINHA N. Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller[J]. International journal of electrical power and energy systems, 2016, 80: 52-63.
[5] RAJAN A, JEEVAN K, MALAKAR T. Weighted elitism based ant lion optimizer to solve optimum VAr planning problem[J]. Applied soft computing, 2017, 55: 352-370.
[6] 赵世杰, 高雷阜, 于冬梅, 等. 带混沌侦查机制的蚁狮优化算法优化SVM参数[J]. 计算机科学与探索, 2016, 10(5): 722-731.
ZHAO Shijie, GAO Leifu, YU Dongmei, et al. Ant lion optimizer with chaotic investigation mechanism for optimizing SVM parameters[J]. Journal of frontiers of computer science and technology, 2016, 10(5): 722-731.
[7] REYNOLDS A. Liberating Lévy walk research from the shackles of optimal foraging[J]. Physics of life reviews, 2015, 14: 59-83.
[8] 何莉, 王淼, 李博. 面向单目标优化的集成粒子群算法[J]. 重庆邮电大学学报: 自然科学版, 2017, 29(4): 527-534.
HE Li, WANG Miao, LI Bo. Ensemble particle swarm optimizer for single objective optimization[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2017, 29(4): 527-534.
[9] REYNOLDS A M. Cooperative random Lévy flight searches and the flight patterns of honeybees[J]. Physics letters A, 2006, 354(5/6): 384-388.
[10] 朱颢东, 孙振, 吴迪, 等. 基于改进蚁群算法的移动机器人路径规划[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(6): 849-855.
ZHU Haodong, SUN Zhen, WU Di, et al. Path planning for mobile robot based on improved ant colony algorithm[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2016, 28(6): 849-855.
[11] LEE C Y, YAO Xin. Evolutionary programming using mutations based on the levy probability distribution[J]. IEEE transactions on evolutionary computation, 2004, 8(1): 1-13.
[12] MANTEGNA R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes[J]. Physical review E, 1994, 49(5): 4677-4683.
[13] JENSI R, JIJI G W. An enhanced particle swarm optimization with levy flight for global optimization[J]. Applied soft computing, 2016, 43: 248-261.
[14] 江建. 精英自适应混合遗传算法及其实现[J]. 计算机工程与应用, 2009, 45(27): 34-35, 101.
JIANG Jian. Elite adaptive hybrid genetic algorithm and its realization[J]. Computer engineering and applications, 2009, 45(27): 34-35, 101.
[15] 周新宇, 吴志健, 王晖, 等. 一种精英反向学习的粒子群优化算法[J]. 电子学报, 2013, 41(8): 1647-1652.
ZHOU Xinyu, WU Zhijian, WANG Hui, et al. Elite opposition-based particle swarm optimization[J]. Acta electronica sinica, 2013, 41(8): 1647-1652.
[16] 刘丁. 直拉硅单晶生长过程建模与控制[M]. 北京: 科学出版社, 2015: 1-3, 46-57.
LIU Ding. Modeling and controlling of crystal growth in the Czochralski process[M]. Beijing: Science Press, 2015: 1-3, 46-57.
[17] 刘胜, 宋佳, 李高云. PSO并行优化LSSVR非线性黑箱模型辨识[J]. 智能系统学报, 2013, 5(1): 51-56.
LIU Sheng, SONG Jia, LI Gaoyun. Modeling a complex nonlinear system with particle swarm optimization and parallel-optimized least squares support vector regression[J]. CAAI transactions on intelligent systems, 2013, 5(1): 51-56.

备注/Memo

备注/Memo:
收稿日期:2017-06-30。
基金项目:国家自然科学基金重点项目(61533014);陕西省教育厅专项科研计划项目(17JK0456).
作者简介:景坤雷,男,1993年生,硕士研究生,主要研究方向为非线性大时滞系统建模、参数辨识与控制;赵小国,男,1978年生,讲师,博士研究生,主要研究方向为复杂系统的建模与控制;张新雨,男,1985年生,讲师,博士研究生,IEEE会员,主要研究方向为信号处理、自适应滤波、多目标优化和检测技术。先后发表学术论文10篇,被EI检索6篇,授权实用新型专利2项,软件著作权2项,申报发明专利1项。
通讯作者:刘丁.E-mail:liud@xaut.edu.cn.
更新日期/Last Update: 1900-01-01