[1]黄顺伦,杜春,宋宝泉,等.出租车数据的城市道路网路段通行时间估计方法[J].智能系统学报,2017,(06):790-798.[doi:10.11992/tis.201706071]
 HUANG Shunlun,DU Chun,SONG Baoquan,et al.Urban link travel time estimation using taxi data[J].CAAI Transactions on Intelligent Systems,2017,(06):790-798.[doi:10.11992/tis.201706071]
点击复制

出租车数据的城市道路网路段通行时间估计方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2017年06期
页码:
790-798
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
Urban link travel time estimation using taxi data
作者:
黄顺伦 杜春 宋宝泉 李军 陈浩
国防科技大学 电子科学与工程学院, 湖南 长沙 410073
Author(s):
HUANG Shunlun DU Chun SONG Baoquan LI Jun CHEN Hao
School of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
关键词:
通行时间估计GPS-出租车城市道路网双车道模型
Keywords:
travel time estimationGPS-enabled taxicaburban road networkstwo-lane model
分类号:
TP311
DOI:
10.11992/tis.201706071
摘要:
城市路段通行时间估计能够更好地运营和管理城市交通。针对包含起点-终点位置,行程时间和距离信息的GPS行程数据,提出了一种城市道路网短时通行时间的估计模型。首先将城市道路网按照交叉路口分解为多个路段,并基于k-最短路径搜索方法分析司机行进路线。然后针对每一个路段,提出了双车道通行时间多项式关联关系模型,既能提升道路网通行时间精细度,又能避免因训练数据不足导致的路网通行时间过拟合问题。最后以最小化行程期望时间和实际行程时间之间的均方误差为优化目标,拟合道路网通行时间。在纽约出租车数据集上的实验结果表明,所提模型及方法相对于传统单车道估计方法能够更准确地估计城市道路网路段的通行时间。
Abstract:
The accurate estimation of urban link travel time plays a significant role in urban traffic monitoring and supervision. Using taxicab GPS trip data, which contains origin and destination locations, travel time, and distances, this paper establishes a model to estimate average short-term urban link travel times. Firstly, the urban road network is divided into many segments based on crossings, and the running route of the driver was analyzed using the k-shortest path search algorithm. Then, for each road segment, a polynomial incidence relation model of the travel time in double lanes is proposed; this increases precision and avoids the overfitting of the travel time of the road network caused by insufficient training data. Finally, by minimizing the mean square error between the expected path travel time and the observed path travel time as the optimization objective, the travel time of the road network is fitted. The results of experiments conducted on New York taxi datasets show that, relative to the traditional single-lane estimation method, the proposed model and method more efficiently estimate the travel time of the road segments in urban road networks.

参考文献/References:

[1] COIFMAN B, CASSIDY M. Vehicle reidentification and travel time measurement on congested freeways[J]. Transportation research part a: policy and practice, 2002, 36(10): 899-917.
[2] ZHANG X, ZHANG B, LIU L, et al. Estimating foliar nitrogen concentration with hyperspectral remote sensing image[C]//Third International Asia-Pacific Environmental Remote Sensing Remote Sensing of the Atmosphere, Ocean, Environment, and Space. Beijing, 2003: 187-193.
[3] WU C C, LEE W M G. Control of vaporous naphthalene by scrubbing with surfactants[J]. Journal of environmental engineering, 2004, 130(3): 276-281.
[4] PARK D, RILETT L. Forecasting multiple-period freeway link travel times using modular neural networks[J]. Transportation research record: journal of the transportation research board, 1998(1617): 163-170.
[5] LI R, ROSE G. Incorporating uncertainty into short-term travel time predictions[J]. Transportation research part c: emerging technologies, 2011, 19(6): 1006-1018.
[6] YEON J, ELEFTERIADOU L, LAWPHONGPANICH S. Travel time estimation on a freeway using discrete time Markov chains[J]. Transportation research part B: methodological, 2008, 42(4): 325-338.
[7] HASAN S, CHOUDHURY C, BEN-AKIVA M, et al. Modeling of travel time variations on urban links in London[J]. Transportation research record: journal of the transportation research board, 2011(2260): 1-7.
[8] HERRERA J C, WORK D B, HERRING R, et al. Evaluation of traffic data obtained via GPS-enabled mobile phones: the mobile century field experiment[J]. Transportation research part c: emerging technologies, 2010, 18(4): 568-583.
[9] ZHAN X, ZHENG Y, Yi X, et al. Citywide traffic volume estimation using trajectory data[J]. IEEE transactions on knowledge and data engineering, 2017, 29(2): 272-285.
[10] ZHENG F, VAN ZUYLEN H. Urban link travel time estimation based on sparse probe vehicle data[J]. Transportation research part c: emerging technologies, 2013, 31(0): 145-157.
[11] HUNTER T, HERRING R, ABBEEL P, et al. Path and travel time inference from GPS probe vehicle data[J]. NIPS analyzing networks and learning with graphs, 2009, 12(1).
[12] HERRING R, HOFLEITNER A, ABBEEL P, et al. Estimating arterial traffic conditions using sparse probe data[C]//13th International IEEE Conference on Intelligent Transportation Systems. Madeira Island, Portugal, 2010: 929-936.
[13] Taxi data from new york taxi and limousine commission. [2016-05-14] http://www.nyc.gov/html/tlc/html/home/home.shtml.
[14] ZHAN X, HASAN S, UKKUSURI S V, et al. Urban link travel time estimation using large-scale taxi data with partial information[J]. Transportation research part c: emerging technologies, 2013, 33(0): 37-49.
[15] ZHAN X, UKKUSURI S V, YANG C. A Bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data[J]. Automation in construction, 2016, 72: 237-246.
[16] YEN J Y. Finding the k shortest loopless paths in a network[J]. Management science, 1971, 17(11): 712-716.
[17] DAGANZO C. Multinomial probit: the theory and its application to demand forecasting[M]. Elsevier, 2014.
[18] CHEN Y, OLIVER D S. Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification[J]. Computational geosciences, 2013, 17(4): 689-703.
[19] BONNANS J F, GILBERT J C, LEMARÉCHAL C, et al. Numerical optimization: theoretical and practical aspects [M]. Springer Science and Business Media, 2013.
[20] KING D A, PETERS J R, DAUS M W. Taxicabs for improved urban mobility: are we missing an opportunity [C]//Transportation Research Board 91st Annual Meeting. Washington DC, USA, 2012 (12-2097).
[21] FOSGERAU M, FUKUDA D. Valuing travel time variability: Characteristics of the travel time distribution on an urban road[J]. Transportation research part c: emerging technologies, 2012, 24(0): 83-101.
[22] 孙锋, 黄玲, 叶盈,等. 混行条件下直线式公交站点停靠车辆数优化[J]. 哈尔滨工程大学学报. 2015, 36(2): 152-155.
SUN Feng, HUANG Ling, YE Ying, et al. Optimizing the number of buses stopping at on-line stops under mixed traffic conditions[J]. Journal of Harbin Engineering University, 2015, 36(2): 152-155.
[23] 徐程, 曲昭伟, 陶鹏飞,等. 动态交通数据异常值的实时筛选与恢复方法[J]. 哈尔滨工程大学学报, 2016. 37(2): 211-217.
XU Cheng, QU Zhaowei, TAO Pengfei, et al. Methods of real-time screening and reconstruction for dynamic traffic abnormal data[J]. Journal of Harbin Engineering University, 2016, 37(2): 211-217.

备注/Memo

备注/Memo:
收稿日期:2017-06-22;改回日期:。
基金项目:国家“863”计划项目(2015AA123901).
作者简介:黄顺伦,女,1993年生,硕士研究生,主要研究方向为交通数据分析、机器学习;杜春,男,1983年生,讲师,博士,主要研究方向为机器学习、模式识别、图像处理;宋宝泉,男,1980年生,讲师,博士,主要研究方向为大数据管理、智能信息处理。
通讯作者:陈浩.E-mail:hchen@nudt.edu.cn.
更新日期/Last Update: 2018-01-03