[1]王永帅,陈增强,孙明玮,等.一阶惯性大时滞系统Smith预估自抗扰控制[J].智能系统学报,2018,13(04):500-508.[doi:10.11992/tis.201705031]
 WANG Yongshuai,CHEN Zengqiang,SUN Mingwei,et al.Smith prediction and active disturbance rejection control for first-order inertial systems with long time-delay[J].CAAI Transactions on Intelligent Systems,2018,13(04):500-508.[doi:10.11992/tis.201705031]
点击复制

一阶惯性大时滞系统Smith预估自抗扰控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年04期
页码:
500-508
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Smith prediction and active disturbance rejection control for first-order inertial systems with long time-delay
作者:
王永帅1 陈增强12 孙明玮1 孙青林1
1. 南开大学 计算机与控制工程学院, 天津 300350;
2. 天津市智能机器人重点实验室, 天津 300350
Author(s):
WANG Yongshuai1 CHEN Zengqiang12 SUN Mingwei1 SUN Qinglin1
1. College of Computer and Control Engineering, Nankai University, Tianjin 300350, China;
2. Key Laboratory of Intelligent Robotics of Tianjin, Tianjin 300350, China
关键词:
大时滞系统一阶惯性系统线性自抗扰控制Smith预估器稳定裕度劳斯判据稳定性分析稳定可行域
Keywords:
systems with long time-delayfirst-order inertial systemsLADRCSmith predictorstability marginRouth criterionstability analysisstable region
分类号:
TP272
DOI:
10.11992/tis.201705031
摘要:
大时滞系统是工业过程控制中的典型难题,将先进控制方法应用于大时滞系统时需要与传统的Smith预估器相结合才能获得理想的控制效果。针对一阶惯性大时滞系统,研究了Smith预估器与线性自抗扰控制技术相结合的设计问题,分析了系统的稳定条件和参数摄动问题。证明了当被控对象参数与Smith预估器参数相同时,闭环控制系统稳定的结论,同时推导了参数不同时控制系统稳定的一个充分条件。另外基于数值仿真,从暂态性能、稳定裕度和抗扰能力三方面分析了系统参数和控制参数摄动的影响作用,这些结果可用于Smith预估器和线性自抗扰控制器参数的整定。
Abstract:
A system with long time-delay is a typical difficulty experienced in industrial process control. When an advanced control method is applied to such a system, an ideal control effect can be obtained only by combining it with a traditional Smith predictor. In this paper, we address first-order inertial systems with long time-delay, investigate the combined design of a Smith predictor with the linear active disturbance rejection control (LADRC) technique, and discuss the system stability conditions and parameter perturbations. We prove that the closed-loop control system is stable when the parameters of the controlled object are identical to the Smith predictor parameters. Moreover, we deduce a sufficient condition for maintaining the stability of the control system when these parameters differ. In addition, using numerical simulation, we analyze the impacts of perturbation of the system and control parameters on the transient performance, stability margin, and disturbance rejection ability. These results can be used to tune the parameters of the Smith predictor and LADRC controller.

参考文献/References:

[1] SMITH O J M. Closer control of loops with dead time[J]. Chemical engineering progress, 1957, 53(5):217-219.
[2] 贾飚. Smith预估器在纯滞后矿仓料位控制中的应用[J]. 自动化仪表, 2004, 25(5):39-41. JIA Biao. Application of smith predictor in ore silo material level control with dead time characteristic[J]. Process automation instrumentation, 2004, 25(5):39-41.
[3] 刘启辉, 文云, 张云龙. 基于一阶时滞系统的Smith预估器控制研究[J]. 自动化技术与应用, 2014, 33(9):11-13, 17. LIU Qihui, WEN Yun, ZHANG Yunlong. Research of smith predictor controller based on first-order dynamics plus dead time[J]. Techniques of automation and applications, 2014, 33(9):11-13, 17.
[4] 任雪梅. 非线性时滞系统的稳定自适应控制[J]. 智能系统学报, 2007, 2(5):84-90. REN Xuemei. Stable adaptive neural network control of nonlinear time delay systems[J]. CAAI transactions on intelligent systems, 2007, 2(5):84-90.
[5] 罗小元, 朱志浩, 关新平. 不确定非线性时滞系统的自适应滑模控制[J]. 智能系统学报, 2010, 5(4):332-335. LUO Xiaoyuan, ZHU Zhihao, GUAN Xinping. Adaptive sliding mode control for uncertain nonlinear time-delay systems[J]. CAAI transactions on intelligent systems, 2010, 5(4):332-335.
[6] 蒋朝辉, 李学明, 桂卫华. 大时滞系统全参数自适应预测控制策略[J]. 中南大学学报:自然科学版, 2012, 43(1):195-201. JIANG Zhaohui, LI Xueming, GUI Weihua. All parameters adaptive predictive control strategy for long time-delay system[J]. Journal of central south university:science and technology, 2012, 43(1):195-201.
[7] MANFRED M, SKOGESTAD S, RIVERA D F. Implications of internal model control for PID controllers[C]//Proceedings of 1984 American Control Conference. San Diego, USA, 1984:661-666.
[8] 邓九英, 王钦若, 叶宝玉. 一种纯时滞系统的鲁棒控制优化设计方法[J]. 信息与控制, 2011, 40(1):1-7. DENG Jiuying, WANG Qinruo, YE Baoyu. Robust control optimization design method of a system with pure-delay[J]. Information and control, 2011, 40(1):1-7.
[9] 达飞鹏, 宋文忠. 大时滞系统的智能控制研究[J]. 中国电机工程学报, 2003, 23(9):186-188. DA Feipeng, SONG Wenzhong. Intelligent controller design for systems of long time delay[J]. Proceedings of the CSEE, 2003, 23(9):186-188.
[10] ZHOU Ling, CHEN Jie, XU Lixin. An intelligent control scheme of time delay system[C]//Proceedings of 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Wuhan, China, 2008:446-448.
[11] 韩京清, 张文革. 大时滞系统的自抗扰控制[J]. 控制与决策, 1999, 14(4):67-71. HAN Jingqing, ZHANG Wen’ge. ADRC control for large time-delay systems[J]. Control and decision, 1999, 14(4):67-71.
[12] GAO Zhiqiang. Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of 2003 American Control Conference. Denver, USA, 2003:4989-4996.
[13] TIAN Gang, GAO Zhiqiang. Frequency response analysis of active disturbance rejection based control system[C]//Proceedings of 2007 IEEE International Conference on Control Applications. Singapore, 2007:1595-1599.
[14] 陈增强, 孙明玮, 杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报, 2013, 39(5):574-580. CHEN Zengqiang, SUN Mingwei, YANG Ruiguang. On the stability of linear active disturbance rejection control[J]. Acta automatica sinica, 2013, 39(5):574-580.
[15] ZHANG Dongyang, YAO Xiaolan, WU Qinghe. Frequency-domain characteristics analysis of linear active disturbance rejection control for second-order systems[C]//Proceedings of the 34th Chinese Control Conference. Hangzhou, China, 2015:53-58.
[16] HUANG Congzhi, GAO Zhiqiang. On transfer function representation and frequency response of linear active disturbance rejection control[C]//Proceedings of the 32nd Chinese Control Conference. Xi’an, China, 2013:72-77.
[17] ZHENG Qinling, GAO Zhiqiang. Predictive active disturbance rejection control for processes with time delay[J]. ISA transactions, 2014, 53(4):873-881.
[18] 唐德翠, 高志强, 张绪红. 浊度大时滞过程的预测自抗扰控制器设计[J]. 控制理论与应用, 2017, 34(1):101-108. TANG Decui, GAO Zhiqiang, ZHANG Xuhong. Design of predictive active disturbance rejection controller for turbidity[J]. Control theory and applications, 2017, 34(1):101-108.
[19] 杨瑞光. 线性自抗扰控制的若干问题研究[D]. 天津:南开大学, 2011:65-67. YANG Ruiguang. On linear active disturbance rejection control[D]. Tianjin:Nankai University, 2011:65-67.

备注/Memo

备注/Memo:
收稿日期:2017-05-27。
基金项目:国家自然科学基金项目(61573199,61573197);天津市自然科学基金项目(14JCYBJC18700).
作者简介:王永帅,女,1993年生,硕士研究生,主要研究方向为自抗扰控制、预测控制;陈增强,男,1964年生,教授,博士生导师,主要研究方向为智能控制、预测控制、自抗扰控制。主持完成国家"863"基金和国家自然科学基金6项,获得省部级科技进步奖4次,发表学术论文200余篇;孙明玮,男,1972年生,教授,主要研究方向为飞行器制导与控制、自抗扰控制。主持国防科技攻关基金和国家自然科学基金4项,获得国防科技进步奖3次,发表学术论文50余篇。
通讯作者:陈增强.E-mail:chenzq@nankai.edu.cn.
更新日期/Last Update: 2018-08-25