[1]蒋亦樟,朱丽,刘丽,等.多视角模糊双加权可能性聚类算法[J].智能系统学报,2017,12(06):806-815.[doi:10.11992/tis.201703031]
 JIANG Yizhang,ZHU Li,LIU Li,et al.Multi-view fuzzy double-weighting possibility clustering algorithm[J].CAAI Transactions on Intelligent Systems,2017,12(06):806-815.[doi:10.11992/tis.201703031]
点击复制

多视角模糊双加权可能性聚类算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年06期
页码:
806-815
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
Multi-view fuzzy double-weighting possibility clustering algorithm
作者:
蒋亦樟1 朱丽1 刘丽2 王士同1
1. 江南大学 数字媒体学院, 江苏 无锡 214122;
2. 江苏信息职业技术学院 物联网工程学院, 江苏 无锡 214153
Author(s):
JIANG Yizhang1 ZHU Li1 LIU Li2 WANG Shitong1
1. School of Digital Media, Jiangnan University, Wuxi 214122, China;
2. School of Internet of Things Engineering, Jiangsu Vocational College of Information Technology, Wuxi 214153, China
关键词:
多视角聚类视角间模糊加权视角内属性模糊加权可能性聚类
Keywords:
multi-view clusteringfuzzy weighting between viewsfuzzy weighting of attribute within viewspossibilistic clustering
分类号:
TP181
DOI:
10.11992/tis.201703031
摘要:
为解决传统可能性聚类算法(PCM)无法满足多视角学习场景聚类的实际问题,并进一步考虑到现有多视角聚类算法尚未重视的视角权重及视角内特征权重优化问题,本文提出一种新的具备最佳视角及最优特征划分能力的多视角模糊双加权可能性聚类算法(MV-FDW-PCM)。该算法将基于传统的PCM算法,给出了详细的多视角聚类学习框架使得PCM算法具备多视角聚类能力,进而通过引入视角间模糊加权机制及视角内属性模糊加权机制解决视角间权重及视角内特征权重优化问题。实验结果表明,所提的MV-FDW-PCM算法在面对多视角聚类问题时较以往算法具有更佳的聚类效果。
Abstract:
To solve the problem that traditional possibility clustering algorithms (PCM) barely achieve multi-view clustering, and considering that the optimization of views and feature weights has not been regarded as important in existing multi-view clustering algorithms, this paper proposes a new multi-view fuzzy double-weighted possibility clustering algorithm (MV-FDW-PCM). The algorithm is based on the traditional PCM algorithm, and it gives a detailed multi-view clustering learning framework, which gives it its own multi-view clustering ability. It realizes the optimization of the weight of view and the feature weight within the view by the introduction of an inter-view fuzzy weighting mechanism and an inside-view attribute fuzzy weighting mechanism. The experimental results show that the proposed MV-FDW-PCM algorithm has better clustering performance than the previous algorithms regarding multi-view clustering.

参考文献/References:

[1] JIANG Y Z, DENG Z H, CHUNG F L, et al. Realizing two-view TSK fuzzy classification system by using collaborative learning[J]. IEEE transactions on systems, man, and cybernetics: systems, 2017, 47(1): 145-160.
[2] YAMANISHI Y, VERT J P, KANEHISA M. Protein network inference from multiple genomic data: a supervised approach[J]. Bioinformatics, 2004, 20(1): 363-370.
[3] PEDRYCZ W. Collaborative fuzzy clustering[J]. Pattern recognition letter, 2002, 23(14): 1675-1686.
[4] CLEUZIOU G, EXBRAYAT M, MARTIN L, et al. CoFKM: a centralized method for multiple-view clustering [C]//Proc of the 9th IEEE International Conference on Data Mining (ICDM 2009). Miami, USA, 2009: 752-757.
[5] TZORTZIS G F, LIKEAS A C. Kernel-based weighted multi-view clustering[C]//IEEE 12th International Conference on Data Mining. Brussels, Belgium, 2012: 675-684.
[6] DENG Z H, JIANG Y Z, ISHIBUCHI H, et al. Enhanced knowledge-leverage-based tsk fuzzy system modeling for inductive transfer learning[J]. ACM transactions on intelligent systems and technology, 2016, 8(1): 1-21.
[7] QIAN P J, JIANG Y Z, DENG Z H, et al. Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering[J]. IEEE transaction on cybernetics, 2016, 46(1): 181-193.
[8] DENG Z H, JIANG Y Z, CHUNG F L, et al. Transfer prototype-based fuzzy clustering[J]. IEEE transactions on fuzzy systems, 2016, 24(5): 1210-1232.
[9] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10): 1345-1359.
[10] JIANG Y Z, CHUNG F L, ISHIBUCHI H, et al. Multitask TSK fuzzy system modeling by mining intertask common hidden structure[J]. IEEE transactions on cybernetics, 2015, 45(3): 548-561.
[11] CARUANA R. Multitask learning[J]. Machine learning, 1997, 28(1): 41-75.
[12] DENG Z H, CHOI K S, JIANG Y Z, et al. A survey on soft subspace clustering[J]. Information sciences, 2016, 348: 84-106
[13] HALL LO, GOLDGOF DB. Convergence of the single-pass and online fuzzy C-means algorithms[J]. IEEE transactions on fuzzy systems, 2011, 19(4): 792-794.
[14] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York, USA: Plenum Press, 1981: 65-79.
[15] FREY B J, DUECK D. Clustering by passing messages between data points[J]. Science, 2007, 315(5814): 972-976.
[16] 曾令伟, 伍振兴, 杜文才.基于改进自监督学习群体智能(ISLCI)的高性能聚类算法[J].重庆邮电大学学报: 自然科学版, 2016, 28(1): 131-137.
ZENG Lingwei, WU Zhengxin, DU Wencai. Improved selfsupervised learning collection intelligence based high performance data clustering aproach[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2016, 28(1): 131-137.
[17] 程旸, 王士同.基于局部保留投影的多可选聚类发掘算法[J]. 智能系统学报, 2016, 11(5): 600-607.
CHENG Yang, WANG Shitong. A multiple alternative clusterings mining algorithm using locality preserving projections[J]. CAAI transactions on intelligent systems, 2016, 11(5): 600-607.
[18] 杭文龙, 蒋亦樟, 刘解放, 等.迁移近邻传播聚类算法[J]. 软件学报, 2016, 27(11): 2796-2813.
HANG Wenlong, JIANG Yizhang, LIU Jiefang, et al. Transfer affinity propagation clustering algorithm[J]. Journal of software, 2016, 27(11): 2796-2813.
[19] 邓赵红, 王士同, 吴锡生, 等. 鲁棒的极大熵聚类算法RMEC及其例外点标识[J]. 中国工程科学, 2004, 4(9): 38-45.
DENG Zhaohong, WANG Shitong, WU Xisheng, et al. Robust maximum entropy clustering algorithm rmec and its outlier labeling[J]. Engineering science, 2004, 6(9): 38-45.
[20] KARAYIANNIS N B. MECA: maximum entropy clustering algorithm[C]//Proc of the 3rd IEEE Conf. on Fuzzy Systems. Orlando: IEEE Press, 1994: 630-635.
[21] KRISHNAPURAM R, KELLER J. A possibilistic approach to clustering[J]. IEEE transactions on fuzzy systems, 1993, 1(2): 98-110.
[22] KRISHNAPURAM R, KELLER J M. The possiblistic means algorithms: Insights and recommendation[J]. IEEE transactions on fuzzy systems, 1996, 4(3): 385-393.
[23] TRYGVE R, BRODATZ T. Texture classification [EB/OL]. [2007-08-01]. http://www.ux.uis.no/tranden/brodatz.html.
[24] GU Q Q, ZHOU J. Learning the shared subspace for multi-task clustering and transductive transfer classification [C]//Proc Int Conf Data Mining (ICDM). Miami, USA, 2009: 59-168.

备注/Memo

备注/Memo:
收稿日期:2017-03-23;改回日期:。
基金项目:国家自然科学基金项目(61300151,61702225);江苏省自然科学基金项目(BK20160187);中央高校基本科研业务费基金项目(JUSRP11737).
作者简介:蒋亦樟,男,1988年生,讲师,博士,主要研究方向为人工智能、模式识别、模糊系统。发表学术论文40余篇,其中被SCI、EI检索20余篇;朱丽,女,1996年生,硕士研究生,主要研究方向为人工智能、模式识别、模糊系统;刘丽,女,1987年生,讲师,主要研究方向为人工智能、模式识别、模糊系统;王士同,男,1964年生,教授,博士生导师,主要研究方向为人工智能、模式识别和生物信息。发表学术论文百余篇,其中被SCI、EI检索50余篇。
通讯作者:蒋亦樟.E-mail:241519405@qq.com.
更新日期/Last Update: 2018-01-03