[1]姜信景,齐小刚,刘立芳.个性化信息推荐方法研究[J].智能系统学报,2018,13(02):189-195.[doi:10.11992/tis.201701002]
 JIANG Xinjing,QI Xiaogang,LIU Lifang.Research on the recommendation method of personalized information[J].CAAI Transactions on Intelligent Systems,2018,13(02):189-195.[doi:10.11992/tis.201701002]
点击复制

个性化信息推荐方法研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年02期
页码:
189-195
栏目:
出版日期:
2018-04-15

文章信息/Info

Title:
Research on the recommendation method of personalized information
作者:
姜信景 齐小刚 刘立芳
西安电子科技大学 数学与统计学院, 陕西 西安 710071
Author(s):
JIANG Xinjing QI Xiaogang LIU Lifang
School of mathematics and statistics, Xi’an University, Xi’an 710071, China
关键词:
网络信息截取因子信息推送基于内容的推荐基于内容相似的协同过滤基于行为相似的协同过滤混合推荐组合推荐
Keywords:
network informationinterception factorinformation pushcontent-based recommendationbehavior-based similarity collaborative filteringcontent-based similarity collaborative filteringmixed recommendationcombined recommendation
分类号:
TP18;O29
DOI:
10.11992/tis.201701002
摘要:
随着信息技术和互联网的发展,人们进入了信息过量且愈发碎片化的时代。当前,个性化信息推送是用户获取网络信息的有效渠道。由于信息的更新速度快和用户兴趣更新等问题,传统的推荐算法很少关注甚至忽略上述因素,造成最终的推荐结果欠佳。为了给用户更好的个性化推荐服务,论文首次引入截取因子,提出了组合推荐算法(CR算法)。该算法的实质是将截取因子引入到基于内容的推荐算法与基于用户的协同过滤算法中,进而生成混合推荐算法。在推荐列表中,CR算法产生的推荐结果由两部分组成:一部分由混合推荐算法生成,另一部分由基于用户的协同过滤算法生成。根据信息的发布时间,决定该信息由哪类算法产生推荐:当浏览时间与当前时间的间隔不大于某个值时,采用混合推荐算法;否则,直接采用基于用户的协同过滤算法。基于真实数据的实验结果表明,CR算法优于同类算法。
Abstract:
It’s an excessively informational and more fragmented era that is contributed to the development of information technology and the Internet. At present, personalized recommendation is a relatively effective way to help users gain various network information. Recommendations may not be ideal as the traditional algorithms rarely focus on the fast speed of information updating and change of users interests. We propose a combined recommendation algorithm by introducing an interception factor and calls it the CR algorithm. The core idea of it is to introduce the interception factor to the content-based recommendation algorithm and user-based collaborative filtering algorithm. The mixed recommendation consists of the content-based recommendation algorithm and user-based collaborative filtering algorithm. Recommending results of CR algorithm are divided into the outcomes produced by mixed recommendation algorithm and the user-based collaborative filtering algorithm. It is the publishing time of information that decides which algorithm should be chosen to produce recommendations: the mixed recommendation algorithm is selected when the difference between browsing time and message publishing time does not exceed some threshold, or directly chooses the user-based collaborative filtering. Simulation results based on real data show the algorithm we proposed is superior to other existing algorithms.

参考文献/References:

[1] 李佳珊. 个性化新闻推荐引擎中新闻分组聚类技术的研究与实现[D]. 北京: 北京邮电大学, 2013.
LI Jiashan. Research and implementation of text clustering for personalized news recommandation system[D]. Beijing: Beijing University of Posts and Telecommunications, 2013.
[2] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012.
[3] BALABANOVI? M, SHOHAM Y. Fab: content-based, collaborative recommendation[J]. Communications of the ACM, 1997, 40(3): 66-72.
[4] MANDL M, FELFERNIG A, TEPPAN E, et al. Consumer decision making in knowledge-based recommendation[J]. Journal of intelligent information systems, 2011, 37(1): 1-22.
[5] LI Xiaohui, MURATA T. A knowledge-based recommendation model utilizing formal concept analysis and association[C]//Proceedings of the 2nd International Conference on Computer and Automation Engineering. Singapore, 2010: 221-226.
[6] GARCIN F, ZHOU Kai, FALTINGS B, et al. Personalized news recommendation based on collaborative filtering[C]//Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology. Washington, DC, USA: IEEE, 2012: 437-441.
[7] DARVISHY A, IBRAHIM H, MUSTAPHA A, et al. New attributes for neighborhood-based collaborative filtering in news recommendation[J]. Journal of emerging technologies in web intelligence, 2015, 7(1): 13-19.
[8] YANG Wu, TANG Rui, LU Ling. A fused method for news recommendation[C]//Proceedings of the 2016 International Conference on Big Data and Smart Computing (BigComp). Hong Kong, China, 2016: 341-344.
[9] LU Zhongqi, DOU Zhicheng, LIAN Jianxun, et al. Content-based collaborative filtering for news topic recommendation[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Austin, Texas, USA, 2015: 217-223.
[10] LIU Y, BAO L, GAO L. Trust-based new recommendation algorithm of collaborative filtering combination[J]. Information Japan, 2013, 16(7): 4555-4576. (未找到本条文献信息, 请核对)
[11] WANG Jingjin, LIN Kunhui, LI Jia. A collaborative filtering recommendation algorithm based on user clustering and slope one scheme[C]//Proceedings of the 2013 8th International Conference on Computer Science & Education (ICCSE). Colombo, Sri Lanka, 2013: 1473-1476.
[12] CAPELLE M, FRASINCAR F, MOERLAND M, et al. Semantics-based news recommendation[J]//Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics. Craiova, Romania, 2012: 27.
[13] CUI Limeng, SHI Yong. A Method based on one-class SVM for news recommendation[J]. Procedia computer science, 2014, 31: 281-290.
[14] REN Rui, ZHANG Lingling, CUI Limeng, et al. Personalized financial news recommendation algorithm based on ontology[J]. Procedia computer science, 2015, 55: 843-851.
[15] LOMMATZSCH A, KENTER T, DE VRIES A P, et al. Real-time news recommendation using context-aware ensembles[M]//DE RIJKE M. Advances in Information Retrieval. Cham, Germany: Springer, 2014.
[16] 杨博, 赵鹏飞. 推荐算法综述[J]. 山西大学学报: 自然科学版, 2011, 34(3): 337-350.
YANG Bo, ZHAO Pengfei. Review of the art of recommendation algorithms[J]. Journal of Shanxi university: natural science edition, 2011, 34(3): 337-350.
[17] 路永和, 李焰锋. 改进TF—IDF算法的文本特征项权值计算方法[J]. 图书情报工作, 2013, 57(3): 90-95.
LU Yonghe, LI Yanfeng. Improvement of text feature weighting method based on TF-IDF algorithm[J]. Library and information service, 2013, 57(3): 90-95.

备注/Memo

备注/Memo:
收稿日期:2017-01-04。
基金项目:国家自然科学基金项目(61572435, 61472305);陕西省自然科学基金项目(2015JZ002, 2015JM6311);浙江省自然科学基金项目(LZ16F020001);宁波市自然科学基金项目(2016A610035).
作者简介:姜信景,男,1988年生,硕士研究生,主要研究方向为个性化信息推荐;齐小刚,男,1973年生,教授,博导,博士,主要研究方向为系统建模与故障诊断;刘立芳,女,1972年生,教授,博士,主要研究方向为数据处理与智能计算。
通讯作者:齐小刚.E-mail:xgqi@xidian.edu.cn.
更新日期/Last Update: 1900-01-01