[1]陈晓华,刘大莲,田英杰,等.可拓支持向量分类机[J].智能系统学报,2018,(01):147-151.[doi:10.11992/tis.201610019]
 CHEN Xiaohua,LIU Dalian,TIAN Yingjie,et al.Extension support vector classification machine[J].CAAI Transactions on Intelligent Systems,2018,(01):147-151.[doi:10.11992/tis.201610019]
点击复制

可拓支持向量分类机(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2018年01期
页码:
147-151
栏目:
出版日期:
2018-01-24

文章信息/Info

Title:
Extension support vector classification machine
作者:
陈晓华1 刘大莲2 田英杰3 李兴森4
1. 北京联合大学 教务处, 北京 100101;
2. 北京联合大学 基础部, 北京 100101;
3. 中国科学院 虚拟经济与数据科学研究中心, 北京 100190;
4. 浙江大学宁波理工学院 管理学院, 浙江 宁波 315100
Author(s):
CHEN Xiaohua1 LIU Dalian2 TIAN Yingjie3 LI Xingsen4
1. Dean’s office, Beijing Union University, Beijing 100101, China;
2. Department of Basic Course Teaching, Beijing Union University, Beijing 100101, China;
3. Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beiji
关键词:
数据挖掘可拓学分类支持向量机最优化最优化核函数先验知识统计学习理论
Keywords:
data miningextensionclassificationsupport vector machineoptimizationkernel functionprior knowledgestatistical learning theory
分类号:
TP181
DOI:
10.11992/tis.201610019
摘要:
针对分类问题,基于可拓学的思想,提出了可拓支持向量分类机算法。与标准的支持向量分类机不同,可拓支持向量机在进行分类预测的同时,更注重于找到那些通过变化特征值而转换类别的样本。文中给出了可拓变量和可拓分类问题的定义,并构建了求解可拓分类问题的两种可拓支持向量机算法。把可拓学与SVM结合是一种新的方向,文中所提出的算法还有待进一步的理论分析,将在未来的工作里,继续探索如何在可拓学的基础上,构建更加完善的可拓SVM方法。
Abstract:
We propose an extension support vector machine (ESVM) to address the classification problem. Unlike the standard support vector machine, ESVM considers samples that can be converted into different labels by changing some feature values. We define the extension variables and extension classification problems and construct the corresponding optimization problem using a heuristic algorithm. In the future, we will improve the proposed method to incorporate the extension theory.

参考文献/References:

[1] 蔡文, 杨春燕, 陈文伟, 等. 可拓集与可拓数据挖掘[M]. 北京: 科学出版杜, 2008.
CAI Wen, YANG Chunyan, CHEN Wenwei, et al. Extension set and extension data mining[M]. Beijing: Science Press, 2008.
[2] 杨春燕, 蔡文. 可拓工程[M]. 北京: 科学出版社, 2007.
YANG Chunyan, CAI Wen. Extension engineering[M]. Beijing: Science Press, 2007.
[3] CAI Wen. Extension theory and its application[J]. Chinese science bulletin, 1999, 44(17): 1538-1548.
[4] 李立希, 李铧汶, 杨春燕. 可拓学在数据挖掘中的应用初探[J]. 中国工程科学, 2004, 6(7): 53-59.
LI Lixi, LI Huawen, YANG Chunyan. Study on the application of extenics in data mining[J]. Engineering science, 2004, 6(7): 53-59.
[5] 陈文伟, 黄金才. 从数据挖掘到可拓数据挖掘[J]. 智能技术, 2006, 1(2): 50-52.
CHEN Wenwei, HUANG Jincai. From data mining to extension data mining[J]. Intelligent technology, 2006, 1(2): 50-52.
[6] 杨春燕, 蔡文. 可拓数据挖掘研究进展[J]. 数学的实践与认识, 2009, 39(4): 136-141.
YANG Chunyan, CAI Wen. Recent progress in extension data mining[J]. Mathematics in practice and theory, 2009, 39(4): 136-141.
[7] 蔡文, 杨春燕, 何斌. 可拓逻辑初步[M]. 北京: 科学出版社, 2003.
CAI Wen, YANG Chunyan, HE Bin. Extension logic[M]. Beijing: Science Press, 2003.
[8] 蔡文, 杨春燕, 林伟初. 可拓工程方法[M]. 北京: 科学出版社, 1999.
CAI Wen, YANG Chunyan, LIN Weichu. Extension engineering methods[M]. Beijing: Science Press, 1999.
[9] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[10] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000.
[11] VAPNIK V N. Statistical learning theory[M]. New York: John Wiley and Sons, 1998.
[12] NOBLE W S. Support vector machine applications in computational biology[M]//SCH?ELKOPF B, TSUDA K, VERT J P. Kernel Methods in Computational Biology. Cambridge: MIT Press, 2004.
[13] ADANKON M M, CHERIET M. Model selection for the LS-SVM. application to handwriting recognition[J]. Pattern recognition, 2009, 42(12): 3264-3270.
[14] TIAN Yingjie, SHI Yong, LIU Xiaohui. Recent advances on support vector machines research[J]. Technological and economic development of economy, 2012, 18(1): 5-33.
[15] DENG Naiyang, TIAN Yingjie, ZHANG Chunhua. Support vector machines: optimization based theory, algorithms, and extensions[M]. Boca Raton: CRC Press, 2013.
[16] HUANG Kaizhu, YANG Haiqin, KING I, et al. Learning large margin classifiers locally and globally[C]//Proceeding of the 21st International Conference on Machine Learning. Banff, Alberta, Canada, 2004.
[17] SHAWE-TAYLOR J, CRISTIANINI N. Kernel methods for pattern analysis[M]. Cambridge: Cambridge University Press, 2004.
[18] BORGWARDT K M. Kernel methods in bioinformatics[M]//LU H H S, SCH?LKOPF B, ZHAO Hongyu. Handbook of Statistical Bioinformatics. Berlin, Heidelberg: Springer, 2011: 317-334.
[19] VAPNIK V, IZMAILOV R. Learning using privileged information: Similarity control and knowledge transfer[J], Journal of machine learning research, 2015, 16: 2023-2049.
[20] SUN S. A survey of multi-view machine learning[J]. Neural computing and applications, 23(7): 2031-2038.
[21] CHEPLYTGINA V, TAX, D M, LOOG M. Multiple instance learning with bag dissimilarities[J], Pattern recognition, 2015, 48 (1): 264-275.
[22] CARBONNEAU M A, GRANGER E, RAYMOND A J, et al. Robust multiple-instance learning ensembles using random subspace instance selection[J]. Pattern recognition, 2016, 58: 83-99.

相似文献/References:

[1]张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,(02):31.
 ZHANG Ji-fu,ZHANG Su-lan,HU Li-hua.Constrained concept lattice and its construction method[J].CAAI Transactions on Intelligent Systems,2006,(01):31.
[2]张海涛,董春游.基于Web的可拓专家系统研究[J].智能系统学报,2009,(02):175.
 ZHANG Hai-tao,DONG Chun-you.An extendable expert system based on the Web[J].CAAI Transactions on Intelligent Systems,2009,(01):175.
[3]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报,2007,(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,(01):8.
[4]杨春燕,蔡 文.挖掘同对象信息元的传导知识[J].智能系统学报,2008,(04):305.
 YANG Chun-yan,CA IWen.M in ing conductive knowledge in information elements possessed by an identical object[J].CAAI Transactions on Intelligent Systems,2008,(01):305.
[5]叶广仔,李卫华,李淑飞.可拓策略生成系统的构件化设计与实现[J].智能系统学报,2010,(04):366.
 YE Guang-zai,LI Wei-hua,LI Shu-fei.The Design and Implementation of Extension Strategy Generation System Based on Components[J].CAAI Transactions on Intelligent Systems,2010,(01):366.
[6]李承晓,李卫华.租房可拓策略生成系统[J].智能系统学报,2011,(03):272.
 LI Chengxiao,LI Weihua.Research on a tenement extension strategy generation system[J].CAAI Transactions on Intelligent Systems,2011,(01):272.
[7]何清.物联网与数据挖掘云服务[J].智能系统学报,2012,(03):189.
 HE Qing.The Internet of things and the data mining cloud service[J].CAAI Transactions on Intelligent Systems,2012,(01):189.
[8]曹礼园,李卫华.基于基元和知网的问题相关度计算[J].智能系统学报,2015,(02):234.[doi:10.3969/j.issn.1673-4785]
 CAO Liyuan,LI Weihua.Calculation of correlation problem based on basic element and HowNet[J].CAAI Transactions on Intelligent Systems,2015,(01):234.[doi:10.3969/j.issn.1673-4785]
[9]李海林,郭韧,万校基.基于特征矩阵的多元时间序列最小距离度量方法[J].智能系统学报,2015,(03):442.[doi:10.3969/j.issn.1673-4785.201405047]
 LI Hailin,GUO Ren,WAN Xiaoji.A minimum distance measurement method for amultivariate time series based on the feature matrix[J].CAAI Transactions on Intelligent Systems,2015,(01):442.[doi:10.3969/j.issn.1673-4785.201405047]
[10]文天柱,许爱强,邓露.可拓否定选择算法及其在故障诊断中的应用[J].智能系统学报,2015,(03):488.[doi:10.3969/j.issn.1673-4785.201402020]
 WEN Tianzhu,XU Aiqiang,DENG Lu.A new negative selection algorithm based on Extenics and its application in fault diagnosis[J].CAAI Transactions on Intelligent Systems,2015,(01):488.[doi:10.3969/j.issn.1673-4785.201402020]

备注/Memo

备注/Memo:
收稿日期:2016-10-15。
基金项目:国家自然科学基金项目(61472390,11271361,71331005);北京市自然科学基金项目(1162005).
作者简介:陈晓华,女,1975年生,工程师,主要研究方向为电力系统及其自动化;刘大莲,女,1978年生,副教授,博士研究生,主要研究方向为数据挖掘;田英杰,男,1973年,研究员,博士生导师,主要研究方向为最优化与机器学习。
通讯作者:刘大莲.E-mail:ldlluck@sina.com.
更新日期/Last Update: 2018-02-01