[1]陈晓华,刘大莲,田英杰,等.可拓支持向量分类机[J].智能系统学报,2018,13(1):147-151.[doi:10.11992/tis.201610019]
 CHEN Xiaohua,LIU Dalian,TIAN Yingjie,et al.Extension support vector classification machine[J].CAAI Transactions on Intelligent Systems,2018,13(1):147-151.[doi:10.11992/tis.201610019]
点击复制

可拓支持向量分类机

参考文献/References:
[1] 蔡文, 杨春燕, 陈文伟, 等. 可拓集与可拓数据挖掘[M]. 北京: 科学出版杜, 2008.
CAI Wen, YANG Chunyan, CHEN Wenwei, et al. Extension set and extension data mining[M]. Beijing: Science Press, 2008.
[2] 杨春燕, 蔡文. 可拓工程[M]. 北京: 科学出版社, 2007.
YANG Chunyan, CAI Wen. Extension engineering[M]. Beijing: Science Press, 2007.
[3] CAI Wen. Extension theory and its application[J]. Chinese science bulletin, 1999, 44(17): 1538-1548.
[4] 李立希, 李铧汶, 杨春燕. 可拓学在数据挖掘中的应用初探[J]. 中国工程科学, 2004, 6(7): 53-59.
LI Lixi, LI Huawen, YANG Chunyan. Study on the application of extenics in data mining[J]. Engineering science, 2004, 6(7): 53-59.
[5] 陈文伟, 黄金才. 从数据挖掘到可拓数据挖掘[J]. 智能技术, 2006, 1(2): 50-52.
CHEN Wenwei, HUANG Jincai. From data mining to extension data mining[J]. Intelligent technology, 2006, 1(2): 50-52.
[6] 杨春燕, 蔡文. 可拓数据挖掘研究进展[J]. 数学的实践与认识, 2009, 39(4): 136-141.
YANG Chunyan, CAI Wen. Recent progress in extension data mining[J]. Mathematics in practice and theory, 2009, 39(4): 136-141.
[7] 蔡文, 杨春燕, 何斌. 可拓逻辑初步[M]. 北京: 科学出版社, 2003.
CAI Wen, YANG Chunyan, HE Bin. Extension logic[M]. Beijing: Science Press, 2003.
[8] 蔡文, 杨春燕, 林伟初. 可拓工程方法[M]. 北京: 科学出版社, 1999.
CAI Wen, YANG Chunyan, LIN Weichu. Extension engineering methods[M]. Beijing: Science Press, 1999.
[9] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[10] CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines and other kernel-based learning methods[M]. Cambridge: Cambridge University Press, 2000.
[11] VAPNIK V N. Statistical learning theory[M]. New York: John Wiley and Sons, 1998.
[12] NOBLE W S. Support vector machine applications in computational biology[M]//SCH?ELKOPF B, TSUDA K, VERT J P. Kernel Methods in Computational Biology. Cambridge: MIT Press, 2004.
[13] ADANKON M M, CHERIET M. Model selection for the LS-SVM. application to handwriting recognition[J]. Pattern recognition, 2009, 42(12): 3264-3270.
[14] TIAN Yingjie, SHI Yong, LIU Xiaohui. Recent advances on support vector machines research[J]. Technological and economic development of economy, 2012, 18(1): 5-33.
[15] DENG Naiyang, TIAN Yingjie, ZHANG Chunhua. Support vector machines: optimization based theory, algorithms, and extensions[M]. Boca Raton: CRC Press, 2013.
[16] HUANG Kaizhu, YANG Haiqin, KING I, et al. Learning large margin classifiers locally and globally[C]//Proceeding of the 21st International Conference on Machine Learning. Banff, Alberta, Canada, 2004.
[17] SHAWE-TAYLOR J, CRISTIANINI N. Kernel methods for pattern analysis[M]. Cambridge: Cambridge University Press, 2004.
[18] BORGWARDT K M. Kernel methods in bioinformatics[M]//LU H H S, SCH?LKOPF B, ZHAO Hongyu. Handbook of Statistical Bioinformatics. Berlin, Heidelberg: Springer, 2011: 317-334.
[19] VAPNIK V, IZMAILOV R. Learning using privileged information: Similarity control and knowledge transfer[J], Journal of machine learning research, 2015, 16: 2023-2049.
[20] SUN S. A survey of multi-view machine learning[J]. Neural computing and applications, 23(7): 2031-2038.
[21] CHEPLYTGINA V, TAX, D M, LOOG M. Multiple instance learning with bag dissimilarities[J], Pattern recognition, 2015, 48 (1): 264-275.
[22] CARBONNEAU M A, GRANGER E, RAYMOND A J, et al. Robust multiple-instance learning ensembles using random subspace instance selection[J]. Pattern recognition, 2016, 58: 83-99.
相似文献/References:
[1]张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,1(2):31.
 ZHANG Ji-fu,ZHANG Su-lan,HU Li-hua.Constrained concept lattice and its construction method[J].CAAI Transactions on Intelligent Systems,2006,1(1):31.
[2]张海涛,董春游.基于Web的可拓专家系统研究[J].智能系统学报,2009,4(2):175.
 ZHANG Hai-tao,DONG Chun-you.An extendable expert system based on the Web[J].CAAI Transactions on Intelligent Systems,2009,4(1):175.
[3]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(1):8.
[4]杨春燕,蔡 文.挖掘同对象信息元的传导知识[J].智能系统学报,2008,3(4):305.
 YANG Chun-yan,CA IWen.M in ing conductive knowledge in information elements possessed by an identical object[J].CAAI Transactions on Intelligent Systems,2008,3(1):305.
[5]叶广仔,李卫华,李淑飞.可拓策略生成系统的构件化设计与实现[J].智能系统学报,2010,5(4):366.
 YE Guang-zai,LI Wei-hua,LI Shu-fei.The Design and Implementation of Extension Strategy Generation System Based on Components[J].CAAI Transactions on Intelligent Systems,2010,5(1):366.
[6]李承晓,李卫华.租房可拓策略生成系统[J].智能系统学报,2011,6(3):272.
 LI Chengxiao,LI Weihua.Research on a tenement extension strategy generation system[J].CAAI Transactions on Intelligent Systems,2011,6(1):272.
[7]何清.物联网与数据挖掘云服务[J].智能系统学报,2012,7(3):189.
 HE Qing.The Internet of things and the data mining cloud service[J].CAAI Transactions on Intelligent Systems,2012,7(1):189.
[8]曹礼园,李卫华.基于基元和知网的问题相关度计算[J].智能系统学报,2015,10(2):234.[doi:10.3969/j.issn.1673-4785]
 CAO Liyuan,LI Weihua.Calculation of correlation problem based on basic element and HowNet[J].CAAI Transactions on Intelligent Systems,2015,10(1):234.[doi:10.3969/j.issn.1673-4785]
[9]李海林,郭韧,万校基.基于特征矩阵的多元时间序列最小距离度量方法[J].智能系统学报,2015,10(3):442.[doi:10.3969/j.issn.1673-4785.201405047]
 LI Hailin,GUO Ren,WAN Xiaoji.A minimum distance measurement method for amultivariate time series based on the feature matrix[J].CAAI Transactions on Intelligent Systems,2015,10(1):442.[doi:10.3969/j.issn.1673-4785.201405047]
[10]文天柱,许爱强,邓露.可拓否定选择算法及其在故障诊断中的应用[J].智能系统学报,2015,10(3):488.[doi:10.3969/j.issn.1673-4785.201402020]
 WEN Tianzhu,XU Aiqiang,DENG Lu.A new negative selection algorithm based on Extenics and its application in fault diagnosis[J].CAAI Transactions on Intelligent Systems,2015,10(1):488.[doi:10.3969/j.issn.1673-4785.201402020]
[11]王丰.导弹武器系统参数性能指标的可拓数据挖掘[J].智能系统学报,2019,14(3):560.[doi:10.11992/tis.201801006]
 WANG Feng.Extension data mining of the performance of a missile weapon system based on its parameter index[J].CAAI Transactions on Intelligent Systems,2019,14(1):560.[doi:10.11992/tis.201801006]
[12]王丰,顾佼佼,林瑜.积累N次主动变换的传导知识挖掘[J].智能系统学报,2019,14(5):1035.[doi:10.11992/tis.201804042]
 WANG Feng,GU Jiaojiao,LIN Yu.Mining conducted knowledge by accumulating N active transformations[J].CAAI Transactions on Intelligent Systems,2019,14(1):1035.[doi:10.11992/tis.201804042]

备注/Memo

收稿日期:2016-10-15。
基金项目:国家自然科学基金项目(61472390,11271361,71331005);北京市自然科学基金项目(1162005).
作者简介:陈晓华,女,1975年生,工程师,主要研究方向为电力系统及其自动化;刘大莲,女,1978年生,副教授,博士研究生,主要研究方向为数据挖掘;田英杰,男,1973年,研究员,博士生导师,主要研究方向为最优化与机器学习。
通讯作者:刘大莲.E-mail:ldlluck@sina.com.

更新日期/Last Update: 2018-02-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134