[1]孙施浩,贾英民.航天器绕飞逼近翻滚目标运动再现的姿轨控制[J].智能系统学报,2016,11(6):818-826.[doi:10.11992/tis.201611022]
 SUN Shihao,JIA Yingmin.Attitude and orbit control of spacecrafts for motion reconstruction of flying around and approaching the tumbling target[J].CAAI Transactions on Intelligent Systems,2016,11(6):818-826.[doi:10.11992/tis.201611022]
点击复制

航天器绕飞逼近翻滚目标运动再现的姿轨控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年6期
页码:
818-826
栏目:
出版日期:
2017-01-20

文章信息/Info

Title:
Attitude and orbit control of spacecrafts for motion reconstruction of flying around and approaching the tumbling target
作者:
孙施浩 贾英民
北京航空航天大学 第七研究室, 北京 100191
Author(s):
SUN Shihao JIA Yingmin
The Seventh Research Division, Beihang University, Beijing 100191, China
关键词:
运动再现相似理论绕飞翻滚姿轨控制航天器
Keywords:
motion reconstructionsimilarityflying aroundtumblingattitude and orbit controlspacecrafts
分类号:
TP18;V416.2
DOI:
10.11992/tis.201611022
摘要:
为了研究地面试验环境下实现航天器捕获失控翻滚目标运动再现的姿轨控制问题,首先,建立了适用于实验验证的六自由度姿轨联合相似模型,可满足实验场地大小、机构速度和运行时间等约束;其次,基于多项式函数设计了有限时间收敛且动态性能良好的绕飞逼近参考轨迹,并利用反步法给出了姿轨联合控制律,证明了相似闭环系统的稳定性。通过仿真算例说明了基于运动再现的姿轨控制方法是有效的。
Abstract:
This paper deals with the attitude and orbit control problem for motion reconstruction of spacecrafts flying around and approaching the tumbling target during ground experiments. Firstly, a 6-DOF similarity model is established to describe the integrated attitude and orbit motion, which is suitable for the experimental verification with the practical constraints on the space size, running velocity and time involved. Secondly, the polynomial approach is used to design the motion reference trajectory that can ensure finite-time convergence and good dynamic performances, based on which, an integrated attitude and orbit control law is proposed by the back-stepping method and the corresponding closed-loop stability is proved. Finally, a numerical example is included to illustrate the effectiveness of the obtained results.

参考文献/References:

[1] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in aerospace sciences, 2014, 68:1-26.
[2] NOLET S. Development of a guidance, navigation and control architecture and validation process enabling autonomous docking to a tumbling satellite[D]. Boston, USA:Massachusetts Institute of Technology, 2007:34-36.
[3] 李鹏, 岳晓奎, 袁建平. 基于θ-D方法的在轨操作相对姿轨耦合控制[J]. 中国空间科学技术, 2012, 32(4):8-14. LI Peng, YUE Xiaokui, YUAN Jianping. Coupled control of relative position and attitude based on θ-D technique for on-orbit operations[J]. Chinese space science and technology, 2012, 32(4):8-14.
[4] PAN Haizhou, KAPILA V. Adaptive nonlinear control for spacecraft formation flying with coupled translational and attitude dynamics[C]//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, Florida, USA:IEEE, 2001:2057-2062.
[5] SEGAL S, GURFIL P. Effect of kinematic rotation-translation coupling on relative spacecraft translational dynamics[J]. Journal of guidance, control, and dynamics, 2009, 32(3):1045-1050.
[6] 廖飞, 季海波, 解永春. 追踪器本体坐标系下航天器姿轨一体化控制律设计[J]. 控制与决策, 2015, 30(9):1679-1684. LIAO Fei, JI Haibo, XIE Yongchun. Integrated orbit and attitude control for spacecraft in body fixed coordinate of chaser[J]. Control and decision, 2015, 30(9):1679-1684.
[7] SHAN J. Synchronized attitude and translational motion control for spacecraft formation flying[J]. Proceedings of the institution of mechanical engineers, part G:journal of aerospace engineering, 2009, 223(6):749-768.
[8] ZHANG Feng, DUAN Guangren. Robust adaptive integrated translation and rotation finite-time control of a rigid spacecraft with actuator misalignment and unknown mass property[J]. International journal of systems science, 2014, 45(5):1007-1034.
[9] 李智斌, 吴宏鑫, 解永春, 等. 航天器智能控制实验平台[J]. 自动化学报, 2001, 27(5):695-699.LI Zhibin, WU Hongxin, XIE Yongchun, et al. Experimental platform for spacecraft intelligent control[J]. Acta automatica sinica, 2001, 27(5):695-699.
[10] 林来兴. 空间交会对接的仿真技术[J]. 航天控制, 1990, 8(4):66-71. LIN Laixing. Simulation technology for rendezvous and docking in space[J]. Aerospace control, 1990, 8(4):66-71.
[11] 刘良栋. 卫星控制系统仿真技术[M]. 北京:中国宇航出版社, 2003:15-21. LIU Liangdong. Simulation technology for satellite control system[M]. Beijing:China Astronautic Publishing Press, 2003:15-21.
[12] BENNINGHOFF H, REMS F, BOGE T. Development and hardware-in-the-loop test of a guidance, navigation and control system for on-orbit servicing[J]. Acta astronautica, 2014, 102:67-80.
[13] 石磊, 管乐鑫, 王京海, 等. 交会对接地面验证技术[J]. 中国科学:技术科学, 2014, 44(1):27-33. SHI Lei, GUAN Yuexin, WANG Jinghai, et al. Ground test technology of rendezvous and docking[J]. Scientia sinica techologica, 2014, 44(1):27-33.
[14] KLINE S J. Similitude and approximation theory[M]. New York:Springer, 1986:76-103.
[15] PERSSON S, BODIN P, GILL E, et al. PRISMA-an autonomous formation flying mission[C]//Proceedings of the ESA Small Satellite Systems and Services Symposium. Sardinia, Italy:ESA, 2006:25-29.
[16] 何兆伟, 师鹏, 葛冰, 等. 航天器地面实验的相似性分析方法[J]. 北京航空航天大学学报, 2012, 38(4):502-508. HE Zhaowei, SHI Peng, GE Bing, et al. Similitude investigation for ground experiment of spacecraft[J]. Journal of Beijing university of aeronautics and astronautics, 2012, 38(4):502-508.
[17] 孙施浩, 赵林, 贾英民. 空间合作目标运动再现的相似设计方法研究[J]. 宇航学报, 2014, 35(7):802-810. SUN Shihao, ZHAO Lin, JIA Yingmin. Similitude design method for motion reconstruction of space cooperative vehicles[J]. Journal of astronautics, 2014, 35(7):802-810.
[18] XU Wenfu, LIANG Bin, XU Yangsheng, et al. A ground experiment system of free-floating robot for capturing space target[J]. Journal of intelligent and robotic systems, 2007, 48(2):187-208.
[19] FEHSE W. Automated rendezvous and docking of spacecraft[M]. Cambridge:Cambridge University Press, 2005:362-417.
[20] SUN Shihao, LI Hao, JIA Yingmin, et al. Development of a simulation platform for spacecraft Omni-directional rendezvous[C]//Proceedings of 2016 Chinese Intelligent Systems Conference. Xiamen, China, 2016:77-88.

备注/Memo

备注/Memo:
收稿日期:2016-11-16。
基金项目:国家“973”计划项目(2012CB821200,2012CB821201);国家自然科学基金项目(61134005,61327807,61520106010).
作者简介:孙施浩,男,1989年生,博士研究生,主要研究方向为航天器控制、航天器地面验证实验;贾英民,男,1958年生,教授,博士生导师,国家杰出青年基金获得者,长江学者特聘教授,中国人工智能学会常务理事,中国人工智能学会智能空天系统专业委员会主任,主要研究方向为鲁棒与自适应控制、航空航天控制,发表学术论文100余篇。
通讯作者:孙施浩.E-mail:jxcrssh@126.com.
更新日期/Last Update: 1900-01-01