[1]王超,刘奕群,马少平.搜索引擎点击模型综述[J].智能系统学报,2016,11(6):711-718.[doi:10.11992/tis.201605023]
 WANG Chao,LIU Yiqun,MA Shaoping.A survey of click models for Web browsing[J].CAAI Transactions on Intelligent Systems,2016,11(6):711-718.[doi:10.11992/tis.201605023]
点击复制

搜索引擎点击模型综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年6期
页码:
711-718
栏目:
出版日期:
2017-01-20

文章信息/Info

Title:
A survey of click models for Web browsing
作者:
王超 刘奕群 马少平
清华大学 计算机系, 北京 100084
Author(s):
WANG Chao LIU Yiqun MA Shaoping
State Key Lab of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China
关键词:
搜索引擎信息检索结果排序用户行为分析点击模型
Keywords:
search engineinformation retrievalresult rankinguser behavior analysisclick model
分类号:
TP391
DOI:
10.11992/tis.201605023
摘要:
搜索引擎用户在与搜索引擎的交互过程中反映出的隐性反馈信息(主要是点击行为信息)是搜索引擎用来改进结果排序的重要影响因素。然而,由于结果位置、展现形式等各种因素的影响,将反馈信息直接应用于搜索排序任务往往难以取得较好的效果。针对这一问题,研究人员提出了构建描述用户点击行为的点击模型,并基于不同的点击模型估计用户对展现结果的浏览概率,进而尝试去除结果展现位置等因素对用户行为的偏置性影响,以达到更好利用隐性反馈信息的目的。作为一种用户交互信息的有效利用方法,点击模型在学术界得到了充分关注,并在工业界得到了广泛的应用。本文是一篇针对点击模型发展过程的综述性文章,对点击模型发展过程中有代表性的多种模型进行了介绍。
Abstract:
The implicit feedback information contained in a user’s search interaction process makes an important contribution to the improvement of search ranking. However, since user behavior is affected by several factors (or biases) caused by the ranked positions of the results, presentation styles, etc., it is difficult to directly adopt click information as a relevant feedback mechanism of the search sequence task. To shed light on this research question, researchers have proposed several click models to describe how users examine and click on results from the search engine result pages (SERPs). Based on these models, it is possible to estimate the examination probability of search results and thus reduce the influence of behavior biases to obtain a justified estimation of the result’s relevance. Much attention has been paid to the click model in recent years because it helps commercial search engines to improve ranking performance. In this paper, recent efforts made in constructing click models were investigated and their differences were compared in both performance and application scenarios.

参考文献/References:

[1] ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework:BM25 and beyond[M]. Hanover, MA:Now Publishers Inc, 2009.
[2] SPARCK JONES K. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of documentation, 1972, 28(1):11-21.
[3] ROBERTSON S E, WALKER S, JONES S, et al. Okapi at trec-3[Z]. Nist Special Publication Sp, 1995, 109:109.
[4] LV Y, ZHAI C. When documents are very long, bm25 fails![C]//Proceedings of the 34th International ACM SIGIRConference on Research and Development in Information Retrieval. New York:ACM, 2011:1103-1104.
[5] PAGE L, BRIN S, MOTWANI R, et al. The pagerank citation ranking:bringing order to the web[Z]. Stanford:Stanford University, 1999.
[6] GYONGYI Z, GARCIA-MOLINA H, PEDERSEN J. Combating web spam with trustrank[C]//Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada:VLDB Endowment, 2004:576-587.
[7] SUROWIECKI J. The wisdom of crowds[Z]. Anchor, 2005.
[8] AGICHTEIN E, BRILL E, DUMAIS S, et al. Learning user interaction models for predicting web search result preferences[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2006:3-10.
[9] CRASWELL N, ZOETER O, TAYLOR M, et al. An experimental comparison of click position-bias models[C]//Proceedings of the 2008 International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2008:87-94.
[10] JOACHIMS T, GRANKA L, PAN B, et al. Accurately interpreting clickthrough data as implicit feedback[C]//Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2005:154-161.
[11] WANG C, LIU Y, ZHANG M, et al. Incorporating vertical results into search click models[C]//Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. New York, NY, USA:ACM, 2013:503-512.
[12] YUE Y S, PATEL R, ROEHRIG H. Beyond position bias:Examining result attractiveness as a source of presentation bias in clickthrough data[C]//Proceedings of the 19th International Conference on World Wide Web. New York, NY, USA:ACM, 2010:1011-1018.
[13] GUO F, LIU C, WANG Y M. Efficient multiple-click models in web search[C]//Proceedings of the Second ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2009:124-131.
[14] DUPRET G E, PIWOWARSKI B. A user browsing model to predict search engine click data from past observations[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2008:331-338.
[15] CHAPELLE O, ZHANG Y. A dynamic bayesian network click model for web search ranking[C]//Proceedings of the 18th International Conference on World Wide Web. New York, NY, USA:ACM, 2009:1-10.
[16] CHEN D Q, CHEN W Z, WANG H X, et al. Beyond ten blue links:enabling user click modeling in federated web search[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2012:463-472.
[17] LIU Z Y, LIU Y Q, ZHOU K, et al. Influence of vertical result in web search examination[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2015:193-202.
[18] KLÖCKNER K, WIRSCHUM N, JAMESON A. Depth-and breadth-first processing of search result lists[C]//CHI’04 Extended Abstracts on Human Factors in Computing. New York, NY, USA:ACM, 2004:1539.
[19] LORIGO L, PAN B, HEMBROOKE H, et al. The influence of task and gender on search and evaluation behavior using google[J]. Information processing & management, 2006, 42(4):1123-1131.
[20] XU W H, MANAVOGLU E, CANTU-PAZ E. Temporal click model for sponsored search[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2010:106-113.
[21] WANG K S, GLOY N, LI X L. Inferring search behaviors using partially observable Markov (POM) model[C]//Proceedings of the third ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2010:211-220.
[22] WANG C, LIU Y Q, WANG M, et al. Incorporating non-sequential behavior into click models[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA:ACM, 2015:283-292.
[23] GUO F, LIU C, KANNAN A, et al. Click chain model in web search[C]//Proceedings of the 18th International Conference on World Wide Web. New York, NY, USA:ACM, 2009:11-20.
[24] HU B T, ZHANG Y C, CHEN W Z, et al. Characterizing search intent diversity into click models[C]//Proceedings of the 20th International Conference on World Wide Web. New York, NY, USA:ACM, 2011:17-26.
[25] CHEN W Z, WANG D, ZHANG Y C, et al. A noise-aware click model for web search[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2012:313-322.

相似文献/References:

[1]李绍滋,曹 阳,周昌乐.基于非结构化的P2P信息检索关键技术研究[J].智能系统学报,2006,1(02):74.
 LI Shao-zi,CAO Yang,ZHOU Chang-le.Research on key techniques about unstructured P2P information retrieval[J].CAAI Transactions on Intelligent Systems,2006,1(6):74.
[2]张森,张晨,林培光,等.基于用户查询日志的网络搜索主题分析[J].智能系统学报,2017,12(05):668.[doi:10.11992/tis.201706096]
 ZHANG Sen,ZHANG Chen,LIN Peiguang,et al.Web search topic analysis based on user search query logs[J].CAAI Transactions on Intelligent Systems,2017,12(6):668.[doi:10.11992/tis.201706096]

备注/Memo

备注/Memo:
收稿日期:2016-05-26。
基金项目:国家自然科学基金项目(61532011,61672311).
作者简介:王超,男,1989年生,博士,主要研究方向为互联网搜索结果排序和用户行为建模方面的研究,发表学术论文多篇,获得SIGIR2015最佳论文提名奖;刘奕群,男,1981年生,副教授、博士生导师中国人工智能学会理事,知识工程与分布智能专委会委员,中国中文信息学会信息检索与内容安全专委会委员。主要研究方向为信息检索与互联网搜索技术。2016年获得国家自然基金委优秀青年科学基金资助。发表学术论文30余篇,获得SIGIR (CCF A类)最佳论文提名奖。据Google Scholar统计,论文被引用1700余次;马少平,男,1961年生,教授、博士生导师,中国人工智能学会副理事长,知识工程与分布式智能专委会主任,中国中文信息学会常务理事,信息检索与内容安全专委会副主任。主要研究方向为智能信息处理,模式识别、文本信息检索、中文古籍的数字化与检索。作为项目负责人先后承担"973"、"863"、自然科学基金项目等多项课题。所领导的文本信息检索小组,从2002年开始,在国际上著名的TREC (文本检索国际会议)文本检索标准评测中,多次取得第一名的好成绩,发表学术论文多篇。
通讯作者:马少平.E-mail:msp@tsinghua.edu.cn.
更新日期/Last Update: 1900-01-01