[1]张金艺,梁滨,唐笛恺,等.粗匹配和局部尺度压缩搜索下的快速ICP-SLAM[J].智能系统学报,2017,12(03):413-421.[doi:10.11992/tis.201605029]
 ZHANG Jinyi,LIANG Bin,TANG Dikai,et al.Fast ICP-SLAM with rough alignment and local scale-compressed searching[J].CAAI Transactions on Intelligent Systems,2017,12(03):413-421.[doi:10.11992/tis.201605029]
点击复制

粗匹配和局部尺度压缩搜索下的快速ICP-SLAM(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年03期
页码:
413-421
栏目:
出版日期:
2017-06-25

文章信息/Info

Title:
Fast ICP-SLAM with rough alignment and local scale-compressed searching
作者:
张金艺12 梁滨1 唐笛恺1 姚维强2 鲍深2
1. 上海大学 通信与信息工程学院, 上海 200010;
2. 上海大学 微电子研究与开发中心, 上海 200010
Author(s):
ZHANG Jinyi12 LIANG Bin1 TANG Dikai1 YAO Weiqiang2 BAO Shen2
1. School of Communication and Information Engineering, Shanghai University, Shanghai 200010, China;
2. Microelectronic Research and Development Center, Shanghai University, Shanghai 200010, China
关键词:
ICP-SLAM粗匹配初始姿态矩阵局部搜索动态阈值实时性点云迭代
Keywords:
ICP-SLAMrough alignmentinitial pose matrixlocal searchingdynamic thresholdreal-time performancecloud pointiteration
分类号:
TP11
DOI:
10.11992/tis.201605029
摘要:
ICP-SLAM在自主机器人和无人驾驶领域得到了极大的关注,但传统ICP-SLAM缺少当前帧和全局地图的相对位置关系,因此本文ICP算法必须经过大量的迭代之后才能达到收敛条件,这导致传统ICP-SLAM实时性很差。并且在每一次的迭代过程中,必须通过全局搜索才能完成匹配点搜索,这进一步降低了传统ICP-SLAM的实时性。为此,提出了一种快速ICP-SLAM方案。首先,通过MEMS磁力计和全局地标计算出初始位姿矩阵,通过该初始位姿矩阵实现当前帧和全局地图之间粗匹配,进而减少达到收敛条件的迭代次数。其次,在每次迭代过程中,将采用局部尺度压缩搜索完成匹配点搜索,从而减小ICP-SLAM的计算开销,提高ICP-SLAM实时性;同时,每次迭代完成之后,还将通过动态阈值缩小搜索范围,达到加快匹配点搜索的速度,进而提高ICP-SLAM实时性。实验结果表明,和传统ICP-SLAM相比,在理想室内静止场景下,快速ICP-SLAM的迭代次数最高减小了92.34%,ICP算法运行时间最高降低了98.86%。除此之外,ICP-SLAM的整体负载也被保持在可控范围内,ICP-SLAM的整体性能得到很大的提升。
Abstract:
ICP-SLAM has received much attention in the field of autonomous robots and unmanned cars. However, two deficiencies in traditional ICP-SLAM usually result in poor real-time performance. The first is the fact that the relative position between the current scan frame and the global map is not previously known. As a result, the ICP algorithm takes a large number of iterations to reach convergence. The second is that the establishment of correspondence is carried out by global searching and this requires an enormous amount of computational time. To overcome these problems, a fast ICP-SLAM is proposed. To decrease the number of iterations a rough alignment, based on an initial pose matrix, is proposed. In detail, the initial pose matrix is computed using a MEMS magnetometer and global landmarks. Then, a rough alignment is applied between the current scan frame and the global map at the beginning of the ICP algorithm with an initial pose matrix. To accelerate the establishment of correspondence, local scale-compressed searching with a dynamic threshold is proposed where match-points are found within a progressively constrictive range.Compared to traditional ICP-SLAM, under ideal stable conditions, the best experimental results show amount of iteration for ICP algorithm to reach convergence reduces 92.34% and ICP algorithm runtime reduces 98.86%. In addition, computational cost is kept at a stable level due to the elimination of accumulated computational consumption. Moreover, great improvement is observed in the quality and robustness of SLAM

参考文献/References:

[1] LI Hai, CHEN Qijun. Towards a non-probabilistic approach to hybrid geometry-topological SLAM[C]//Proceedings of 2010 8th World Congress of IEEE on Intelligent Control and Automation. Jinan: IEEE, 2010: 1045-1050.
[2] BARRAU A, BONNABEL S. Invariant filtering for Pose EKF-SLAM aided by an IMU[C]//Proceedings of 2015 IEEE Conference on Decision and Control. Osaka: IEEE, 2015: 2133-2138.
[3] 季晓玲, 贺青, 迟宗涛. 基于EKF的SLAM算法在机器人定位中的应用[J]. 科技经济导刊, 2016(13): 17-19.
[4] ZANDARA S, RIDAO P, RIBAS D, et al. Probabilistic surface matching for bathymetry based SLAM[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 40-45.
[5] ALBERT P, RIDAO P, RIBAS D, et al. Bathymetry-based SLAM with difference of normals point-cloud subsampling and probabilistic ICP registration[C]//Proceedings of 2013 MTS/IEEE OCEANS-Bergen. Bergen: IEEE, 2013: 1-8.
[6] TREHARD G, ALSAYED Z, POLLARD E, et al. Credibilist simultaneous Localization And Mapping with a LIDAR[C]//Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, IL: IEEE, 2014: 2699-2706.
[7] ARTH C, PIRCHHEIM C, VENTURA J, et al. Instant outdoor localization and SLAM initialization from 2.5D maps[J]. IEEE transactions on visualization and computer graphics, 2015, 21(11): 1309-1318.
[8] CHOUDHARY S, INDELMAN V, CHRISTENSEN H I, et al. Information-based reduced landmark SLAM[C]//Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA). Seattle, WA: IEEE, 2015: 4620-4627.
[9] 陈兴秀, 张金艺, 晏理, 等. 三维复杂运动模式航迹推算惯性导航室内定位[J]. 应用科学学报, 2014, 32(4): 349-350. CHEN Xingxiu, ZHANG Jinyi, YAN Li, et al. Inertial indoor navigation with 3D complex motion mode of pedestrian dead reckoning[J].Journal of appliend sciences-electronics and information engineering, 2014, 32(4): 349-350.
[10] 张苍松, 郭军, 崔娇, 等. 基于RSSI的室内定位算法优化技术[J]. 计算机工程与应用, 2015, 51(3): 235-238. ZHANG Cangsong, GUO Jun, CUI Jiao, et al. Indoor positioning optimization techniques based on RSSI[J]. Computer engineering and applications, 2015, 51(3):235-238.
[11] 王益健. 蓝牙室内定位关键技术的研究与实现[D]. 南京: 东南大学, 2015. WANG Yijian.Research and implementation on key technologies of bluetooth indoor positioning[D].Nanjing:Southeast University,2015.
[12] BESL P J, MCKAY N D. Method for registration of 3-D shapes[J]. IEEE transactions on pattern analysis and machine intelligence, 1992, 14(2): 239-256.
[13] RUSINKIEWICZ S, LEVOY M. Efficient variants of the ICP algorithm[C]//Proceedings of the Third International Conference on 3-D Digital Imaging and Modeling. Quebec City, Que: IEEE, 2001: 145.
[14] BLANCO J L, GONZáLEZ-JIMéNEZ J, FERNáNDEZ-MADRIGAL J A. A robust, multi-hypothesis approach to matching occupancy grid maps[J]. Robotica, 2013, 31(5): 687-701.
[15] XU Haixia, ZHOU Wei, ZHU Jiang. 3D visual SLAM with a time-of-flight camera[C]//Proceedings of 2015 IEEE Workshop on Signal Processing Systems (SiPS). Hangzhou: IEEE, 2015: 1-6.
[16] ULAS C, TEMELTAS H. A robust feature extraction method and semantic data association for 6D SLAM[C]//Proceedings of 2015 IEEE World Automation Congress (WAC). Mexico: IEEE, 2012: 1-6.
[17] GONG Zizhen, HUA Xianghong, YI Chongzheng, et al. The research and implementation of ICP based on Delaunay triangulation[J]. Engineering of surveying and mapping, 2010, 19(5): 29-31.
[18] HU Linjia, NOOSHABADI S, AHMADI M. Massively parallel KD-tree construction and nearest neighbor search algorithms[C]//Proceedings of 2015 IEEE International Symposium on Circuits and Systems (ISCAS). Lisbon: IEEE, 2015: 2752-2755.
[19] ZHANG Lei, CHOI S I, PARK S Y. Polar-Cartesian hybrid transforms: a novel 2D range scan registration algorithm[J]. International journal of control automation and systems, 2013, 11(5): 1001-1008.
[20] TIAR R, LAKROUF M, AZOUAOUI O. FAST ICP-SLAM for a bi-steerable mobile robot in large environments[C]//Proceedings of 2015 International Conference on Advanced Robotics (ICAR). Istanbul: IEEE, 2015: 1-6.
[21] TIAR R, OUADAH N, AZOUAOUI O, et al. ICP-SLAM methods implementation on a bi-steerable mobile robot[C]//Proceedings of IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM). Toulouse: IEEE, 2013: 1-6.

备注/Memo

备注/Memo:
收稿日期:2016-05-27。
基金项目:国家“863”计划基金项目(2013AA03A1121,2013AA03A1122);上海市教委重点学科资助项目(J50104).
作者简介:张金艺,男,1965年生,研究员,主要研究方向为通信类SoC设计与室内无线定位技术。发表学术论文40余篇,近3年授权与申请专利30项;梁滨,男,1991年生,硕士研究生,主要研究方向为基于激光雷达的室内SLAM;唐笛恺,男,1991年生,硕士研究生,主要研究方向为基于激光雷达的室内SLAM。
通讯作者:梁滨.E-mail:zhangjinyi@staff.shu.edu.cn.
更新日期/Last Update: 2017-06-25