[1]贾旋,周治平.一种基于模板缩减的新型粒子群遗传聚类算法[J].智能系统学报,2016,11(4):561-566.[doi:10.11992/tis.201507026]
 JIA Xuan,ZHOU Zhiping.A novel PSO-GGA for clustering based on pattern reduction[J].CAAI Transactions on Intelligent Systems,2016,11(4):561-566.[doi:10.11992/tis.201507026]
点击复制

一种基于模板缩减的新型粒子群遗传聚类算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年4期
页码:
561-566
栏目:
出版日期:
2016-07-25

文章信息/Info

Title:
A novel PSO-GGA for clustering based on pattern reduction
作者:
贾旋 周治平
江南大学 物联网工程学院, 江苏 无锡 214122
Author(s):
JIA Xuan ZHOU Zhiping
School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
关键词:
模板缩减粒子群广义遗传算法聚类
Keywords:
pattern reductionPSOgeneralized genetic algorithmclustering
分类号:
TP18
DOI:
10.11992/tis.201507026
摘要:
针对群聚类算法的速度问题,提出一种基于模板缩减法加速的新型粒子群广义遗传(PSO-GGA)聚类算法。为了充分地同模板缩减法相结合,该算法采用一种广义遗传算法与粒子群算法串行使用,既能增加种群多样性,又能对模板缩减操作中需要保护的模板进行储存。同时,对每个周期替换粒子数量采用一种递增策略来充分吸取粒子群快速寻优和遗传算法搜索空间大的特性。实验表明:对8个数据集进行测试,该算法能够在基本不降低聚类品质的基础上,显著地缩短聚类时间。
Abstract:
To address the flaws in clustering speed, this paper proposes a novel PSO-GGA clustering algorithm based on pattern reduction. To fully combine the pattern reduction method, the algorithm uses a generalized genetic algorithm in serial to improve the particle swarm optimization algorithm. This can increase the diversity of samples and protect patterns that need to be saved for compression. At the same time, to determine the number of particles needed to replace the poor particles an incremental strategy is employed. This fully embodies the PSO’s ability for rapid search optimization and the genetic algorithm’s advantage of a large search space. The experimental results show that the clustering time only required 20 percent compared to the original algorithm without showing any obvious decline in accuracy.

参考文献/References:

[1] LI Chaoshun, ZHOU Jianzhong, KOU Pangao, et al. A novel chaotic particle swarm optimization based fuzzy clustering algorithm[J]. Neurocomputing, 2012, 83:98-109.
[2] BEHESHTI Z, SHAMSUDDIN S M H. CAPSO:Centripetal accelerated particle swarm optimization[J]. Information sciences, 2014, 258:54-79.
[3] SUN Jun, CHEN Wei, FANG Wei, et al. Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization[J]. Engineering applications of artificial intelligence, 2012, 25(2):376-391.
[4] 秦全德, 李丽, 程适, 等. 交互学习的粒子群优化算法[J]. 智能系统学报, 2012, 7(6):547-553. QIN Quande, LI Li, CHENG Shi, et al. Interactive learning particle swarm optimization algorithm[J]. CAAI transactions on intelligent systems, 2012, 7(6):547-553.
[5] SOLAIMAN B F, SHETA A F. Energy optimization in wireless sensor networks using a hybrid K-means PSO clustering algorithm[J]. Turkish Journal of electrical engineering and computer sciences, 2015.
[6] DASH P, NAYAK M. Multilevel thresholding using PSO clustering[J]. International journal of computer applications, 2014, 97(18):27-32.
[7] CHIANG M C, TSAI C W, YANG C S. A time-efficient pattern reduction algorithm for k-means clustering[J]. Information sciences, 2011, 181(4):716-731.
[8] TSAI C W, HUANG K W, YANG C S, et al. A fast particle swarm optimization for clustering[J]. Soft computing, 2015, 19(2):321-338.
[9] FILHO T M S, PIMENTEL B A, SOUZA R M C R, et al. Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization[J]. Expert systems with applications, 2015, 42(17/18):6315-6328.
[10] RANA S, JASOLA S, KUMAR R. A boundary restricted adaptive particle swarm optimization for data clustering[J]. International journal of machine learning and cybernetics, 2013, 4(4):391-400.
[11] 张亮, 杨国正. 一种变维搜索的量子粒子群优化聚类算法[J]. 小型微型计算机系统, 2012, 33(4):804-808. ZHANG Liang, YANG Guozheng. A quantum particle swarm optimization clustering algorithm using variable dimensions searching[J]. Journal of Chinese computer systems, 2012, 33(4):804-808.
[12] AHMADYFARD A, MODARES H. Combining PSO and k-means to enhance data clustering[C]//Proceedings of International Symposium on Telecommunications. Tehran, Iran, 2008:688-691.

相似文献/References:

[1]杨春玲,王来来,朱 敏.采用改进的粒子群算法训练CNNE模型[J].智能系统学报,2007,2(03):67.
 YANG Chun-ling,WANG Jian-lai,ZHU Min.Using the improved particle swarm optimization to train the CNNE model[J].CAAI Transactions on Intelligent Systems,2007,2(4):67.
[2]刘宏达,马忠丽.均匀粒子群算法[J].智能系统学报,2010,5(04):336.
 LIU Hong-da,MA Zhong-li.A particle swarm optimization algorithm based on uniform design[J].CAAI Transactions on Intelligent Systems,2010,5(4):336.

备注/Memo

备注/Memo:
收稿日期:2015-07-29。
基金项目:江苏省自然科学基金项目(BK20131107);江苏省产学研联合创新资金-前瞻性联合研究项目(BY2013015-33).
作者简介:贾旋,男,1992年生,硕士研究生,主要研究方向为人工智能与模式识别;周治平,男,1962年生,教授,博士,主要研究方向为智能检测、自动化装置、网络安全等。
通讯作者:贾旋.E-mail:6141905027@vip.jiangnan.edu.cn.
更新日期/Last Update: 1900-01-01