[1]黄栋,王昌栋,赖剑煌,等.基于决策加权的聚类集成算法[J].智能系统学报编辑部,2016,11(3):418-425.[doi:10.11992/tis.201603030]
 HUANG Dong,WANG Changdong,LAI Jianhuang,et al.Clustering ensemble by decision weighting[J].CAAI Transactions on Intelligent Systems,2016,11(3):418-425.[doi:10.11992/tis.201603030]
点击复制

基于决策加权的聚类集成算法

参考文献/References:
[1] STREHL A, GHOSH J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions[J]. The journal of machine learning research, 2003, 3(3): 583-617.
[2] CRISTOFOR D, SIMOVICI D. Finding median partitions using information-theoretical-based genetic algorithms[J]. Journal of universal computer science, 2002, 8(2): 153-172.
[3] FERN X Z, BRODLEY C E. Solving cluster ensemble problems by bipartite graph partitioning[C]//Proceedings of the 21st International Conference on Machine Learning. New York, NY, USA, 2004.
[4] FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(6): 835-850.
[5] WANG Xi, YANG Chunyu, ZHOU Jie. Clustering aggregation by probability accumulation[J]. Pattern recognition, 2009, 42(5): 668-675.
[6] SINGH V, MUKHERJEE L, PENG Jiming, et al. Ensemble clustering using semidefinite programming with applications[J]. Machine learning, 2010, 79(1/2): 177-200.
[7] HUANG Dong, LAI Jianhuang, WANG Changdong. Exploiting the wisdom of crowd: a multi-granularity approach to clustering ensemble[C]//Proceedings of the 4th International Conference on Intelligence Science and Big Data Engineering. Beijing, China, 2013: 112-119.
[8] HUANG Dong, LAI Jianhuang, WANG Changdong. Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis[J]. Neurocomputing, 2015, 170: 240-250.
[9] HUANG Dong, LAI Jianhuang, WANG Changdong. Ensemble clustering using factor graph[J]. Pattern recognition, 2016, 50: 131-142.
[10] HUANG Dong, LAI Jianhuang, WANG Changdong. Robust ensemble clustering using probability trajectories[J]. IEEE transactions on knowledge and data engineering, 2016, 28(5): 1312-1326.
[11] LI Tao, DING C. Weighted consensus clustering[C]//Proceedings of the 2008 SIAM International Conference on Data mining. Auckland, New Zealand, 2008: 798-809.
[12] KARYPIS G, KUMAR V. Multilevel k-way partitioning scheme for irregular graphs[J]. Journal of parallel and distributed computing, 1998, 48(1): 96-129.
[13] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: Analysis and an algorithm[C]//Advances in Neural Information Processing Systems. Vancouver, Canada, 2001.
[14] TOPCHY A, JAIN A K, PUNCH W. Clustering ensembles: models of consensus and weak partitions[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(12): 1866-1881.
[15] VEGA-PONS S, CORREA-MORRIS J, RUIZ-SHULCLOPER J. Weighted partition consensus via kernels[J]. Pattern recognition, 2010, 43(8): 2712-2724.
[16] VEGA-PONS S, RUIZ-SHULCLOPER J, GUERRA-GANDóN A. Weighted association based methods for the combination of heterogeneous partitions[J]. Pattern recognition letters, 2011, 32(16): 2163-2170.
[17] 徐森, 周天, 于化龙, 等. 一种基于矩阵低秩近似的聚类集成算法[J]. 电子学报, 2013, 41(6): 1219-1224.XU Sen, ZHOU Tian, YU Hualong, et al. Matrix low rank approximation-based cluster ensemble algorithm[J]. Acta electronica sinica, 2013, 41(6): 1219-1224.
[18] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[19] LI Zhenguo, WU Xiaoming, CHANG S F. Segmentation using superpixels: a bipartite graph partitioning approach[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2012: 789-796.
[20] BACHE K, LICHMAN M. UCI machine learning repository[EB/OL]. (2013-04-04). http://archive.ics.uci.edu/ml.
[21] IAM-ON N, BOONGOEN T, GARRETT S. Refining pairwise similarity matrix for cluster ensemble problem with cluster relations[C]//Proceedings of the 11th International Conference on Discovery Science. Budapest, Hungary, 2008: 222-233.
[22] IAM-ON N, BOONGOEN T, GARRETT S, et al. A link-based approach to the cluster ensemble problem[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(12): 2396-2409.
相似文献/References:
[1]杨小兵,何灵敏,孔繁胜.切换回归模型的抗噪音聚类算法[J].智能系统学报编辑部,2009,4(6):497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
 YANG Xiao-bing,HE Ling-min,KONG Fan-sheng.A noise-resistant clustering algorithm for switching regression models[J].CAAI Transactions on Intelligent Systems,2009,4(3):497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
[2]季瑞瑞,刘 丁.支持向量数据描述的基因表达数据聚类方法[J].智能系统学报编辑部,2009,4(6):544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
 JI Rui-rui,LIU Ding.Improved gene expression data clustering using a support vector domain description algorithm[J].CAAI Transactions on Intelligent Systems,2009,4(3):544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
[3]张秀玲,逄宗鹏,李少清,等.ANFIS的板形控制动态影响矩阵方法[J].智能系统学报编辑部,2010,5(4):360.
 ZHANG Xiu-ling,PANG Zong-peng,LI Shao-qing,et al.A dynamic influence matrix method for flatness control based on adaptivenetworkbased fuzzy inference systems[J].CAAI Transactions on Intelligent Systems,2010,5(3):360.
[4]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报编辑部,2011,6(1):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6(3):57.
[5]陈岳峰,苗夺谦,李文,等.基于概念的词汇情感倾向识别方法[J].智能系统学报编辑部,2011,6(6):489.
 CHEN Yuefeng,MIAO Duoqian,LI Wen,et al.Semantic orientation computing based on concepts[J].CAAI Transactions on Intelligent Systems,2011,6(3):489.
[6]方然,苗夺谦,张志飞.一种基于情感的中文微博话题检测方法[J].智能系统学报编辑部,2013,8(3):208.
 FANG Ran,MIAO Duoqian,ZHANG Zhifei.An emotion-based method of topic detection from Chinese microblogs[J].CAAI Transactions on Intelligent Systems,2013,8(3):208.
[7]刘恋,常冬霞,邓勇.动态小生境人工鱼群算法的图像分割[J].智能系统学报编辑部,2015,10(5):669.[doi:10.11992/tis.201501001]
 LIU lian,CHANG Dongxia,DENG Yong.An image segmentation method based on dynamic niche artificial fish-swarm algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(3):669.[doi:10.11992/tis.201501001]
[8]刘贝贝,马儒宁,丁军娣.基于密度的统计合并聚类算法[J].智能系统学报编辑部,2015,10(5):712.[doi:10.11992/tis.201410028]
 LIU Beibei,MA Runing,DING Jundi.Density-based statistical merging clustering algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(3):712.[doi:10.11992/tis.201410028]
[9]朱书伟,周治平,张道文.融合并行混沌萤火虫算法的K-调和均值聚类[J].智能系统学报编辑部,2015,10(6):872.[doi:10.11992/tis.201505043]
 ZHU Shuwei,ZHOU Zhiping,ZHANG Daowen.K-harmonic means clustering merged with parallel chaotic firefly algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(3):872.[doi:10.11992/tis.201505043]
[10]谷飞洋,田博,张思萌,等.基于置换检验的聚类结果评估[J].智能系统学报编辑部,2016,11(3):301.[doi:10.11992/tis.201603038]
 GU Feiyang,TIAN Bo,ZHANG Simeng,et al.Statistical evaluation of the clustering results based on permutation test[J].CAAI Transactions on Intelligent Systems,2016,11(3):301.[doi:10.11992/tis.201603038]
[11]闵帆,王宏杰,刘福伦,等.SUCE:基于聚类集成的半监督二分类方法[J].智能系统学报编辑部,2018,13(6):974.[doi:10.11992/tis.201711027]
 MIN Fan,WANG Hongjie,LIU Fulun,et al.SUCE: semi-supervised binary classification based on clustering ensemble[J].CAAI Transactions on Intelligent Systems,2018,13(3):974.[doi:10.11992/tis.201711027]

备注/Memo

收稿日期:2016-3-18;改回日期:。
基金项目:国家自然科学基金项目(61573387,61502543);广东省自然科学基金博士启动项目(2016A030310457,2015A030310450,2014A030310180); 广东省科技计划项目(2015A020209124,2015B010108001); 广州市科技计划项目(201508010032); 中央高校基本科研业务费专项项目(16lgzd15)
作者简介:黄栋,男,1987年生,讲师,主要研究方向为数据挖掘与模式识别,发表学术论文10余篇。王昌栋,男,1984年生,讲师,主要研究方向为非线性聚类、社交网络、大数据分析,发表学术论文40余篇。赖剑煌,男,1964年生,教授,博士生导师,博士,广东省图象图形学会理事长,中国图象图形学会常务理事,主要研究方向为生物特征识别、数字图像处理、模式识别和机器学习。主持国家自然科学基金与广东联合重点项目、科技部科技支撑课题各1项,主持国家自然科学基金项目4项。发表学术论文近200篇。
通讯作者:王昌栋.E-mail:changdongwang@hotmail.com.

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134