[1]彭昱忠,元昌安,李洁,等.个体最优共享GEP算法及其气象降水数据预测建模[J].智能系统学报编辑部,2016,11(3):401-409.[doi:10.11992/tis.201603035]
 PENG Yuzhong,YUAN Changan,LI Jie,et al.Individual optimal sharing GEP algorithm and its application in forecast modeling of meteorological precipitation[J].CAAI Transactions on Intelligent Systems,2016,11(3):401-409.[doi:10.11992/tis.201603035]
点击复制

个体最优共享GEP算法及其气象降水数据预测建模(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年3期
页码:
401-409
栏目:
出版日期:
2016-06-25

文章信息/Info

Title:
Individual optimal sharing GEP algorithm and its application in forecast modeling of meteorological precipitation
作者:
彭昱忠12 元昌安1 李洁3 许明涛1 陈冰廉1
1. 广西师范学院 计算机与信息工程学院, 广西 南宁 530021;
2. 广西师范学院 北部湾环境演变与资源利用教育部重点实验室, 广西 南宁 530001;
3. 广西科技师范学院 数计系, 广西 柳州 545004
Author(s):
PENG Yuzhong12 YUAN Changan1 LI Jie3 XU Mingtao1 CHEN Binglian1
1. College of Computer & Information Engineering, Guangxi Normal University, Nanning 530023, China;
2. Key Lab of Beibu Gulf Environment Change and Resource Use of ministry of Education, Guangxi Normal University, Nanning 530001, China;
3. Departmen
关键词:
基因表达式编程经验共享时间序列气象建模降水预测演化计算演化建模
Keywords:
gene expression programmingexperience sharingtime seriesmeteorology modelingprecipitation forecastingevolutionary computationevolution modeling
分类号:
TP391
DOI:
10.11992/tis.201603035
摘要:
针对基因表达式编程算法存在进化后期收敛慢且容易陷入局部最优而降低其数据建模的性能问题,和降水量因受诸多自然因素相互影响而难以准确地建模与预测的问题,提出了一种改进的基因表达式编程算法。该算法具有染色体最优状态记忆功能,在进化过程中可以按条件学习自身的历史经验知识,以加强局部搜索能力和促进收敛,同时尽量控制个体的趋同化而保持种群的多样性。3组不同区域和不同类型的真实降水数据集的实验验证了其可以改善传统GEP算法后期收敛慢的问题,寻优能力更强,降水数据拟合和预测效果均显著优于传统GEP算法、BP神经网络和NAR神经网络等算法。
Abstract:
Gene expression programming (GEP) is characterized by slow convergence and ease of falling into a local optimum in the later stages of its evolution. Many methods are difficult to model and use to accurately forecast precipitation because of the simultaneous influence of many natural factors. In this paper, we propose an improved GEP algorithm, which has an optimal state memory function, can learn from historical experience in the process of evolution to strengthen the local search ability, and can thus promote convergence and, at the same time, control the convergence of individuals and maintain the diversity of the population. The experimental results of three groups from different regions and different actual precipitation data sets show that the proposed algorithm can improve the slow convergence problem of the traditional GEP algorithm and has better search ability. Experimental results also show that the proposed algorithm’s ability to fit and forecast precipitation data is significantly better than that of traditional GEP algorithm, as well as the BP and NAR neural network algorithms.

参考文献/References:

[1] 彭昱忠, 王谦, 元昌安, 等. 数据挖掘技术在气象预报研究中的应用[J]. 干旱气象, 2015, 33(1): 19-27. PENG Yuzhong, WANG Qian, YUAN Chang’an, et al. Review of research on data mining in application of meteorological forecasting[J]. Journal of arid meteorology, 2015, 33(1): 19-27.
[2] 金龙, 吴建生, 林开平, 等. 基于遗传算法的神经网络短期气候预测模型[J]. 高原气象, 2005, 24(6): 981-987. JIN Long, WU Jiansheng, LIN Kaiping, et al. Short-term climate prediction model of neural network based on genetic algorithms[J]. Plateau meteorology, 2005, 24(6): 981-987.
[3] EL-SHAFIE A, JAAFER O, AKRAMI S A. Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia[J]. International journal of the physical sciences, 2011, 6(12): 2875-2885.
[4] GOSAV S, TIRON G. Artificial neural networks built for the rainfall estimation using a concatenated database[J]. Environmental engineering and management journal, 2012, 11(8): 1383-1388.
[5] VENKADESH S, HOOGENBOOM G, POTTER W, et al. A genetic algorithm to refine input data selection for air temperature prediction using artificial neural networks[J]. Applied soft computing, 2013, 13(5): 2253-2260.
[6] RAHMAN M, SAIFUL ISLAM A H M, NADVI S Y M, et al. Comparative study of ANFIS and ARIMA model for weather forecasting in Dhaka[C]//Proceedings of IEEE international conference on informatics, electronics & vision. Dhaka, Bangladesh, 2013: 1-6.
[7] ZHAO Huasheng, JIN Long, HUANG Ying, et al. An objective prediction model for typhoon rainstorm using particle swarm optimization: neural network ensemble[J]. Natural hazards, 2014, 73(2): 427-437.
[8] HE Suhong, FENG Taichen, GONG Yanchun, et al. Predicting extreme rainfall over eastern Asia by using complex networks[J]. Chinese physics B, 2014, 23(5): 059202.
[9] WU Jiansheng, LONG Jin, LIU Mingzhe. Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm[J]. Neurocomputing, 2015, 148: 136-142.
[10] DHANYA C T, KUMAR D N. Data mining for evolving fuzzy association rules for predicting monsoon rainfall of India[J]. Journal of intelligent systems, 2009, 18(3): 193-210.
[11] TERZI O. Monthly rainfall estimation using data-mining process[J]. Applied computational intelligence and soft computing, 2012, 2012: 698071.
[12] BERNARD E, NAVEAU P, VRAC M, et al. Clustering of maxima: spatial dependencies among heavy rainfall in France[J]. Journal of climate, 2013, 26(20): 7929-7937.
[13] TENG Shaohua, FAN Jihui, ZHU Haibin, et al. A cooperative multi-classifier method for local area meteorological data mining[C]//Proceedings of the 18th IEEE International Conference on Computer Supported Cooperative Work in Design. Hsinchu, Taiwan, China, 2014: 435-440.
[14] FERREIRA C. Gene expression programming: mathematical modeling by artificial intelligence[M]. Portugal: Angra do Heroismo, 2002: 1-15.
[15] 胡建军, 唐常杰, 段磊, 等. 基因表达式编程初始种群的多样化策略[J]. 计算机学报, 2007, 30(2): 305-310.HU Jianjun, TANG Changjie, DUAN Lei, et al. The strategy for diversifying initial population of gene expression programming[J]. Chinese journal of computers, 2007, 30(2): 305-310.
[16] 李太勇, 唐常杰, 吴江, 等. 基因表达式编程种群多样性自适应调控算法[J]. 电子科技大学学报, 2010, 39(2): 279-283. LI Taiyong, TANG Changjie, WU Jiang, et al. Adaptive population diversity tuning algorithm for gene expression programming[J]. Journal of university of electronic science and technology of China, 2010, 39(2): 279-283.
[17] 宣士斌, 刘怡光. 基于混合差异度控制的基因表达式编程[J]. 模式识别与人工智能, 2012, 25(2): 186-194. XUAN Shibin, LIU Yiguang. GEP evolution algorithm based on control of mixed diversity degree[J]. Pattern recognition & artificial intelligence, 2012, 25(2): 186-194.
[18] TANG Changjie, DUAN Lei, PENG Jing, et al. The strategies to improve performance of function mining by gene expression programming: genetic modifying, overlapped gene, backtracking and adaptive mutation[C]//Proceedings of the 17th Data Engineering Workshop. Ginowan, Japan, 2006: 100-106.
[19] BAUTU E, BAUTU A, LUCHIAN H. AdaGEP-an adaptive gene expression programming algorithm[C]//Proceedings of IEEE International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Timisoara, Romania, 2007: 403-406.
[20] 元昌安, 唐常杰, 左劼, 等. 基于基因表达式编程的函数挖掘-收敛性分析与残差制导进化算法[J]. 四川大学学报:工程科学版, 2004, 36(6): 100-105. YUAN Changan, TANG Changjie, ZUO Jie, et al. Function mining based on gene expression programming-convergency analysis and remnant-guided evolution algorithm[J]. Journal of Sichuan university :engineering science edition, 2004, 36(6): 100-105.
[21] RYAN N, HIBLER D. Robust gene expression programming[J]. Procedia computer science, 2011, 6: 165-170.
[22] ZHONG Jinghui, ONG Y S, CAI Wentong. Self-learning gene expression programming[J]. IEEE transactions on evolutionary computation, 2016, 20(1): 65-80.
[23] 张鑫源, 胡晓敏, 林盈. 遗传算法和粒子群优化算法的性能对比分析[J]. 计算机科学与探索, 2014, 8(1): 90-102.ZHANG Xinyuan, HU Xiaomin, LIN Ying. Comparisons of genetic algorithm and particle swarm optimization[J]. Journal of frontiers of computer science and technology, 2014, 8(1): 90-102.
[24] 陈宇, 唐常杰, 钟义啸, 等. 基于基因表达式编程和时变强度的时间序列预测[J]. 计算机科学, 2005, 32(7 Suppl. B): 269-271. CHEN Yu, TANG Changjie, ZHONG Yixiao, et al. Time series predication based on gene expression programming and time series vibration intensity[J]. Computer science, 2005, 32(7 Suppl. B): 269-271.

相似文献/References:

[1]钱晓山,阳春华.改进基因表达式编程在股票中的研究与应用[J].智能系统学报编辑部,2010,5(04):303.
 QIAN Xiao-shan,YANG Chun-hua.Improved gene expression programming algorithm tested by predicting stock indexes[J].CAAI Transactions on Intelligent Systems,2010,5(3):303.
[2]钱晓山,阳春华.基于GEP的最小二乘支持向量机模型参数选择[J].智能系统学报编辑部,2012,7(03):225.
 QIAN Xiaoshan,YANG Chunhua.A parameter selection method of a least squares support vector machine based on gene expression programming[J].CAAI Transactions on Intelligent Systems,2012,7(3):225.

备注/Memo

备注/Memo:
收稿日期:2016-3-18;改回日期:。
基金项目:国家自然科学基金项目(61562008、41575051);广西科学研究与技术开发计划项目(1598019-1)、广西高校科学技术研究重点项目(ZD2014083).
作者简介:彭昱忠,男,1980年生,副教授,主要研究方向为智能计算及数据挖掘。主持国家级和省级基金项目4项,发表学术论文21篇。元昌安,男,1964年生,教授,主要研究方向为数据库与知识工程,先后主持国家级和省级基金项目8项,获广西科技进步奖5项,发表学术论文58篇。李洁,女,1980年生,讲师,主要研究方向为智能计算及数据挖掘,发表学术论文7篇。
通讯作者:李洁.E-mail:lijie980522@163.com.
更新日期/Last Update: 1900-01-01