[1]花小朋,孙一颗,丁世飞.一种改进的投影孪生支持向量机[J].智能系统学报编辑部,2016,11(3):384-389.[doi:10.11992/tis.201603049]
 HUA Xiaopeng,SUN Yike,DING Shifei.An improved projection twin support vector machine[J].CAAI Transactions on Intelligent Systems,2016,11(3):384-389.[doi:10.11992/tis.201603049]
点击复制

一种改进的投影孪生支持向量机(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年3期
页码:
384-389
栏目:
出版日期:
2016-06-25

文章信息/Info

Title:
An improved projection twin support vector machine
作者:
花小朋1 孙一颗1 丁世飞2
1. 盐城工学院 信息工程学院, 江苏 盐城 224051;
2. 中国矿业大学 计算机学院, 江苏 徐州 221116
Author(s):
HUA Xiaopeng1 SUN Yike1 DING Shifei2
1. School of Information Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
2. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
关键词:
分类投影孪生支持向量机局部信息加权均值近邻图二次规划约束条件时间复杂度
Keywords:
classificationprojection twin support vector machinelocal informationweighted meanneighborhood graphquadratic programmingconstraint conditiontime complexity
分类号:
TP391.4
DOI:
10.11992/tis.201603049
摘要:
针对投影孪生支持向量机(PTSVM)在训练阶段欠考虑样本空间局部结构和局部信息的缺陷,提出一种具有一定局部学习能力的有监督分类方法:加权投影孪生支持向量机(weighted PTSVM,WPTSVM)。相比于PTSVM,WPTSVM优势在于:通过构造类内近邻图为每个样本获取特定的权值,并且以加权均值取代标准均值,在一定程度上提高了算法的局部学习能力;选取异类样本集中少量边界点构造优化问题的约束条件,很大程度上降低了二次规划求解的时间复杂度;继承了PTSVM的优点,可以看成PTSVM的推广算法。理论分析及其在人造数据集和真实数据集上的测试结果表明该方法具有上述优势。
Abstract:
A supervised classification method having a local learning ability, called weighted projection twin support vector machine (WPTSVM), is proposed. This method aims to improve upon a defect that projection twin support vector machines (PTSVMs) have, namely, that PTSVMs do not take account of the local structure and local information of a sample space in the training process. Compared with PTSVM, WPTSVM improves its local learning ability to some extent by attaching different weights for each sample according to the within-class neighborhood graph and replacing the standard mean with a weighted mean. Moreover, to reduce computational complexity, WPTSVM chooses a small number of boundary points in the contrary-class based on the between-class neighborhood graph to construct constraints of the original optimization problems. The method inherits the merits of PTSVM and can be regarded as an improved version of PTSVM. Experimental results on artificial and real datasets indicate the effectiveness of the WPTSVM method.

参考文献/References:

[1] 皋军, 王士同, 邓赵红. 基于全局和局部保持的半监督支持向量机[J]. 电子学报, 2010, 38(7): 1626-1633. GAO Jun, WANG Shitong, DENG Zhaohong. Global and local preserving based semi-supervised support vector machine[J]. Acta electronica sinica, 2010, 38(7): 1626-1633.
[2] 花小朋, 丁世飞. 局部保持对支持向量机[J]. 计算机研究与发展, 2014, 51(3): 590-597.HUAxiaopeng, DING Shifei. Locality preserving twin support vector machines [J]. Journal of computer research and development, 2014, 51(3): 590-597.
[3] DING Shifei, HUA Xiaopeng, YU Junzhao. An overview on nonparallel hyperplane support vector machines[J]. Neural computing and applications, 2014, 25(5): 975-982.
[4] JAYADEVA, KHEMCHAND R, CHANDRA S. Twin support vector machines for pattern classification [J]. IEEE transaction on pattern analysis and machine intelligence, 2007, 29 (5): 905-910.
[5] MANGASARIAN O L, WILD E W. MultisurFace proximal support vector machine classification via generalized eigenvalues [J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28 (1): 69-74.
[6] PENG Xinjun,XU Dong. Bi-density twin support vector machines for pattern recognition[J]. Neurocomputing, 2013, 99: 134-143.
[7] CHEN Xiaobo, YANG Jian, YE Qiaolin, et al. Recursive projection twin support vector machine via within-class variance minimization[J]. Pattern recognition, 2011, 44 (10/11): 2643-2655.
[8] SHAO Yuanhai, WANG Zhen, CHEN Weijie, et al. A regularization for the projection twin support vector machine[J]. Knowledge-based systems, 2013, 37 (1): 203-210.
[9] YANG Xubing, CHEN Songcan, CHEN Bin, et al. Proximal support vector machine using local information [J]. Neurocomputing, 2009, 73(1): 357-365.
[10] COVER T M, HART P E. Nearest neighbor pattern classification[J]. IEEE transactions on information theory, 1967, 13 (1): 21-27.
[11] WANG Xiaoming, CHUNG Fulai, WANG Shitong. On minimum class locality preserving variance support vector machine[J]. Patter recognition, 2010, 43(8): 2753-2762.
[12] YE Qiaolin, ZhAO Chunxia, YE Ning, et al. Localized twin svm via convex minimization[J]. Neurocomputing, 2011, 74(4): 580-587.
[13] 皋军, 黄丽莉, 王士同. 基于局部子域的最大间距判别分析 [J ]. 控制与决策, 2014, 29 (5): 827-832.GAO Jun, HUANG Lili, WANG Shitong. Local sub-domains based maximum margin criterion [J]. Control and decision, 2014, 29 (5): 827-832.
[14] 邓乃杨, 田英杰. 支持向量机—理论、算法与拓展[M]. 北京: 科学出版社, 2009: 164-223.
[15] 丁立中, 廖士中. KMA-a: 一个支持向量机核矩阵的近似计算算法[J]. 计算机研究与发展, 2012, 49(4): 746-753.DING Lizhong, LIAO Shizhong. KMA-a: a kernel matrix approximation algorithm for support vector machines [J]. Journal of computer research and development, 2012, 49(4): 746-753.
[16] XUE Hui, CHEN Songchan. Glocalization pursuit support vector machine [J].Neural computing and applications, 2011, 20(7):1043-1053.

相似文献/References:

[1]刘三阳 杜喆.一种改进的模糊支持向量机算法[J].智能系统学报编辑部,2007,2(03):30.
 LIU San-yang,DU Zhe.An improved fuzzy support vector machine method[J].CAAI Transactions on Intelligent Systems,2007,2(3):30.
[2]富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报编辑部,2007,2(04):86.
 FU Chun-yan,GE Mao-song.A data stream classification methods adaptive to concept drift[J].CAAI Transactions on Intelligent Systems,2007,2(3):86.
[3]王定桥,李卫华,杨春燕.从用户需求语句建立问题可拓模型的研究[J].智能系统学报编辑部,2015,10(6):865.[doi:10.11992/tis.201507038]
 WANG Dingqiao,LI Weihua,YANG Chunyan.Research on building an extension model from user requirements[J].CAAI Transactions on Intelligent Systems,2015,10(3):865.[doi:10.11992/tis.201507038]
[4]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报编辑部,2016,11(1):84.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11(3):84.[doi:10.11992/tis.201505024]
[5]刘威,刘尚,周璇.BP神经网络子批量学习方法研究[J].智能系统学报编辑部,2016,11(2):226.[doi:10.11992/tis.201509015]
 LIU Wei,LIU Shang,ZHOU Xuan.Subbatch learning method for BP neural networks[J].CAAI Transactions on Intelligent Systems,2016,11(3):226.[doi:10.11992/tis.201509015]
[6]李海林,梁叶.分段聚合近似和数值导数的动态时间弯曲方法[J].智能系统学报编辑部,2016,11(2):249.[doi:10.11992/tis.201507064]
 LI Hailin,LIANG Ye.Dynamic time warping based on piecewise aggregate approximation and data derivatives[J].CAAI Transactions on Intelligent Systems,2016,11(3):249.[doi:10.11992/tis.201507064]
[7]胡小生,温菊屏,钟勇.动态平衡采样的不平衡数据集成分类方法[J].智能系统学报编辑部,2016,11(2):257.[doi:10.11992/tis.201507015]
 HU Xiaosheng,WEN Juping,ZHONG Yong.Imbalanced data ensemble classification using dynamic balance sampling[J].CAAI Transactions on Intelligent Systems,2016,11(3):257.[doi:10.11992/tis.201507015]
[8]李晨曦,孙正兴,宋沫飞,等.一种三维模型最优视图的分类选择方法[J].智能系统学报编辑部,2014,9(01):12.[doi:10.3969/j.issn.1673-4785.201305004]
 LI Chenxi,SUN Zhengxing,SONG Mofei,et al.A classification-based approach for best view selection of 3D models[J].CAAI Transactions on Intelligent Systems,2014,9(3):12.[doi:10.3969/j.issn.1673-4785.201305004]
[9]张龙,陈宸,韩宁,等.压缩感知理论中的建筑电气系统故障诊断[J].智能系统学报编辑部,2014,9(02):204.[doi:10.3969/j.issn.1673-4785.201310026]
 ZHANG Long,CHEN Chen,HAN Ning,et al.Fault diagnosis of electrical systems in buildingsbased on compressed sensing[J].CAAI Transactions on Intelligent Systems,2014,9(3):204.[doi:10.3969/j.issn.1673-4785.201310026]
[10]陈玉明,吴克寿,李向军.基因表达数据在邻域关系中的特征选择[J].智能系统学报编辑部,2014,9(02):210.[doi:10.3969/j.issn.1673-4785.201307014]
 CHEN Yuming,WU Keshou,LI Xiangjun.Gene expression data feature selection with neighborhood relation[J].CAAI Transactions on Intelligent Systems,2014,9(3):210.[doi:10.3969/j.issn.1673-4785.201307014]

备注/Memo

备注/Memo:
收稿日期:2016-3-20;改回日期:。
基金项目:国家重点基础研究计划项目(2013CB329502);国家自然科学基金项目(61379101);江苏省自然科学基金项目(BK20151299).
作者简介:花小朋,男,1975年生,副教授,博士,主要研究方向为机器学习与数据挖掘,发表学术论文10余篇。孙一颗,男,1993年生,硕士研究生,主要研究方向为机器学习、数据挖掘,申请发明专利2项。丁世飞,男,1963年生,教授,博士生导师,中国计算机学会高级会员,中国人工智能学会高级会员,江苏省计算机学会人工智能专业委员会委员,主要研究方向为智能信息处理,目前主持国家973项目1项、国家自然科学基金项目1项,发表学术论文60余篇。
通讯作者:花小朋.E-mail:xp_hua@163.com.
更新日期/Last Update: 1900-01-01