[1]赵姝,赵晖,陈洁,等.基于社团结构的多粒度结构洞占据者发现及分析[J].智能系统学报编辑部,2016,11(3):343-351.[doi:10.11992/tis.201603048]
 ZHAO Shu,ZHAO Hui,CHEN Jie,et al.Recognition and analysis of structural hole spanner in multi-granularitybased on community structure[J].CAAI Transactions on Intelligent Systems,2016,11(3):343-351.[doi:10.11992/tis.201603048]
点击复制

基于社团结构的多粒度结构洞占据者发现及分析(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年3期
页码:
343-351
栏目:
出版日期:
2016-06-25

文章信息/Info

Title:
Recognition and analysis of structural hole spanner in multi-granularitybased on community structure
作者:
赵姝12 赵晖12 陈洁12 陈喜12 张燕平12
1. 安徽大学 计算机科学与技术学院, 安徽 合肥 230601;
2. 安徽大学 信息保障技术协同创新中心, 安徽 合肥 230601
Author(s):
ZHAO Shu12 ZHAO Hui12 CHEN Jie12 CHEN Xi12 ZHANG Yanping12
1. School of Computer Science and Technology, Anhui University, Hefei 230601, China;
2. Center of Information Support and Assurance Technology, Anhui University, Hefei 230601, China
关键词:
结构洞社团结构多粒度层次结构社团划分分层网络网络结构社会网络分析
Keywords:
tructural holecommunity structuremulti-granularityhierarchical structurecommunity divisionhierarchical networksnetwork structuresocial network analysis
分类号:
TP393
DOI:
10.11992/tis.201603048
摘要:
目前研究者已提出一些基于社团结构的结构洞发现方法,然而不同粒度下社团划分结果使网络呈现层次化结构,影响社团结构中节点跨越结构洞的程度。本文基于网络社团划分思想提出一种分层网络的结构洞发现方法MG_MaxD。首先,使用分层递阶社团划分算法(本文使用EAGLE算法),得到不同粒度的社团结构;然后,使用结构洞发现算法MG_MaxD得到不同粒度下的结构洞占据者;最后,使用结构洞跨越程度指标分析不同粒度下的社团结构对节点跨越结构洞程度的影响。在公用和真实数据集上的实验结果表明节点跨越结构洞的程度即结构洞节点的优势将随着粒度的变细而增大。
Abstract:
Recently, more and more attentions have been paid to research of structural holes, and some methods have been proposed to identify the structural holes based on the community structure. However, the network indicates a hierarchical structure after dividing into communities in different granularity, and influences the nodes’ extent to span structural holes in community structure. A structural hole spanners mining algorithm, named MG_MaxD, is proposed which is in a hierarchical network based on the idea of network community division. First,different granular communities are partitioned by using hierarchical community dividing algorithm (such as EAGLE in this paper). Then, structural hole spanners mining algorithm MG_MaxD is used to identifying the structural hole spanners in each granularity. Finally, using the measurement of the extent of node spanning structural holes to analysis the effect of community structure under different granularity that influence the node’s extent to span structural holes. Experimental results on public data and real data indicate that the extent of nodes to span structural holes namely the node’s advantages will increase with the granularity get thinner.

参考文献/References:

[1] BURT R S. Structural holes: The social structure of competition[M]//SWEDBERG R. Explorations in economic sociology. New York, USA: Russell Sage Foundations, 1993.
[2] MA Ning, LIU Yijun, RUYA Tian, et al. Recognition of online opinion leaders based on social network analysis[M]//HUANG Runhe, GHORBANI A A, PASI G, et al. Active media technology. Berlin Heidelberg: Springer, 2012: 483-492.
[3] YOO J, KIM W. The effect of structural holes on the corporate performance and strategic alliances network in pharmaceutical industry[J]. International proceedings of economics development and research, 2013, 67(5): 20-24.
[4] CAI Penghua, ZHAO Hai, LIU Hong, et al. Research and analysis of structural hole and matching coefficient[J]. Journal of software engineering and applications, 2010, 3(11): 1080-1087.
[5] TAN YONG, MOOKERJEE V S, SINGH P V. Social capital, structural holes and team composition: collaborative networks of the open source software community[C]//Proceedings of the international conference on information systems. Montreal, Quebec, Canada, 2007: 155.
[6] SHIPILOV A V, LI S X. Can you have your cake and eat it too? Structural holes’ influence on status accumulation and market performance in collaborative networks[J]. Administrative science quarterly, 2008, 53(1): 73-108.
[7] RODAN S. Structural holes and managerial performance: identifying the underlying mechanisms[J]. Social networks, 2010, 32(3): 168-179.
[8] KLEINBERG J. Strategic network formation with structural holes[C]//Proceedings of the 9th ACM conference on electronic commerce. New York, USA, 2008: 284-293.
[9] BUSKENS V, VAN DE RIJT A. Dynamics of networks if everyone strives for structural holes1[J]. American journal of sociology, 2008, 114(2): 371-407.
[10] GOYAL S, VEGA-REDONDO F. Structural holes in social networks[J]. Journal of economic theory, 2007, 137(1): 460-492.
[11] BRUGGEMAN J, CARNABUCI G, VERMEULEN I. A note on structural holes theory and niche overlap[J]. Social networks, 2003, 25(1): 97-101.
[12] BURT R S. Structural holes and good ideas1[J]. American journal of sociology, 2004, 110(2): 349-399.
[13] BURT R S. Le capital social, les trous structuraux entrepreneur[J]. Revue francaise de sociologie, 1995, 36(4): 599-628.
[14] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41.
[15] NEWMAN M E J, WATTS D J, STROGATZ S H. Random graph models of social networks[J]. Proceedings of the national academy of sciences of the united states of America, 2002, 99(3 Suppl. 1): 2566-2572.
[16] 邓世果, 吴干华, 杨会杰. 基于基尼系数的网络结构洞测量[J]. 上海理工大学学报, 2011, 33(5): 452-456.DENG Shiguo, WU Ganhua, YANG Huijie. Gini-coefficient-based measurement of structural holes[J]. Journal of university of shanghai for science and technology, 2011, 33(5): 452-456.
[17] REZVANI M, LIANG Weifa, Xu Wenzheng, et al. Identifying top-k structural hole spanners in large-scale social networks[C]//Proceedings of the 24th ACM international on conference on information and knowledge management. Melbourne, Australia, 2015: 263-272.
[18] ZHANG Ende, WANG Guoren, GAO Kening, et al. Generalized structural holes finding algorithm by bisection in social communities[C]//Proceedings of the 2012 6th international conference on genetic and evolutionary computing. Washington, DC, USA, 2012: 276-279.
[19] HU Renjie, ZHANG Guangyu. Structural holes in directed fuzzy social networks[J]. Journal of applied mathematics, 2014, 2014: 452063.
[20] LOU Tiancheng, TANG Jie. Mining structural hole spanners through information diffusion in social networks[C]//Proceedings of the 22nd international conference on World Wide Web. New York, NY, USA, 2013: 825-836.
[21] 韩忠明, 吴杨, 谭旭升, 等. 面向结构洞的复杂网络关键节点排序[J]. 物理学报, 2015, 64(5): 058902.HAN Zhongming, WU Yang, TAN Xusheng, et al. Ranking key nodes in complex networks by considering structural holes[J]. Acta physica sinica, 2015, 64(5): 058902.
[22] 苏晓萍, 宋玉蓉. 利用邻域“结构洞”寻找社会网络中最具影响力节点[J]. 物理学报, 2015, 64(2): 020101.SU Xiaoping, SONG Yurong. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks[J]. Acta physica sinica, 2015, 64(2): 020101.
[23] CHEN Fengjiao, LI Kan. Detecting hierarchical structure of community members in social networks[J]. Knowledge-based systems, 2015, 87: 3-15.
[24] SHEN Huawei, CHENG Xueqi, CAI Kai, et al. Detect overlapping and hierarchical community structure in networks[J]. Physica a: statistical mechanics and its applications, 2009, 388(24): 5045-5056.
[25] JIANG Feng, CHEN Yuming. Outlier detection based on granular computing and rough set theory[J]. Applied intelligence, 2015, 42(2): 303-322.
[26] QIAN Jiangbo, ZHU Qiang, CHEN Huahui. Multi-granularity locality-sensitive bloom filter[J]. IEEE transactions on computers, 2015, 64(12): 3500-3514.
[27] NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2004, 69(6): 066133.
[28] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008, 30(2): 155-168.

相似文献/References:

[1]朱大勇,侯晓荣,张新丽.遗传聚类的社团结构发现[J].智能系统学报编辑部,2009,4(01):81.
 ZHU Da-yong,HOU Xiao-rong,ZHANG Xin-Li.Discovery of community structure based on genetic clustering[J].CAAI Transactions on Intelligent Systems,2009,4(3):81.
[2]张燕平,鲍媛媛,赵姝,等.基于学术会议的科研合作网络微观结构动态演化分析[J].智能系统学报编辑部,2015,10(04):620.[doi:10.3969/j.issn.1673-4785.201505052]
 ZHANG Yanping,BAO Yuanyuan,ZHAO Shu,et al.Dynamic microscopic structure evolution analysis for the author collaboration network of academic conferences[J].CAAI Transactions on Intelligent Systems,2015,10(3):620.[doi:10.3969/j.issn.1673-4785.201505052]
[3]李珊珊,刘巍,高红.基于基元的区域港口群竞合网络分析[J].智能系统学报编辑部,2017,12(01):15.[doi:10.11992/tis.201603007]
 LI Shanshan,LIU Wei,GAO Hong.Research on the co-competition network of the regional port group based on basic-element theory[J].CAAI Transactions on Intelligent Systems,2017,12(3):15.[doi:10.11992/tis.201603007]
[4]方莲娣,张燕平,陈洁,等.基于三支决策的非重叠社团划分[J].智能系统学报编辑部,2017,12(03):293.[doi:10.11992/tis.201705013]
 FANG Liandi,ZHANG Yanping,CHEN Jie,et al.Three-way decision based on non-overlapping community division[J].CAAI Transactions on Intelligent Systems,2017,12(3):293.[doi:10.11992/tis.201705013]

备注/Memo

备注/Memo:
收稿日期:2016-3-20;改回日期:。
基金项目:国家高技术研究发展计划项目(2015AA124102);国家自然科学基金项目(61402006、61175046);安徽省高等学校省级自然科学研究项目(KJ2013A016);安徽省自然科学基金项目(1508085MF113);教育部留学回国人员科研启动基金项目.
作者简介:赵姝,女,1979年生,教授,主要研究方向为机器学习、社交网络、智能计算。主持国家自然科学基金、省部级项目等多项。已授权专利1项,获软件著作权3项,发表学术论文20余篇。赵晖,男,1992年生,硕士研究生,主要研究方向为社交网络。陈洁,女,1982年生,博士研究生,主要研究方向为智能计算。
通讯作者:赵姝.E-mail:gongxs7@163.com.
更新日期/Last Update: 1900-01-01