[1]陈万志,林澍,王丽,等.基于用户移动轨迹的个性化健康建议推荐方法[J].智能系统学报编辑部,2016,11(2):264-271.[doi:10.11992/tis.201511026]
 CHEN Wanzhi,LIN Shu,WANG Li,et al.Personalized recommendation algorithm of health advice based on the user’s mobile trajectory[J].CAAI Transactions on Intelligent Systems,2016,11(2):264-271.[doi:10.11992/tis.201511026]
点击复制

基于用户移动轨迹的个性化健康建议推荐方法(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年2期
页码:
264-271
栏目:
出版日期:
2016-04-25

文章信息/Info

Title:
Personalized recommendation algorithm of health advice based on the user’s mobile trajectory
作者:
陈万志1 林澍1 王丽2 李冬梅2
1. 辽宁工程技术大学 电子与信息工程学院, 辽宁 葫芦岛 125105;
2. 渤海装备辽河重工有限公司, 辽宁 盘锦 124010
Author(s):
CHEN Wanzhi1 LIN Shu1 WANG Li2 LI Dongmei2
1. School Electronics and Information Engineering, Liaoning Technical University, Huludao 125105, China;
2. China Petroleum Liaohe Equipment Company, Panjin 124010, China
关键词:
移动医疗大数据分析移动轨迹特征向量个性化推荐
Keywords:
mobile medicallarge data analysismobile trajectoryfeature vectorpersonalized recommendation
分类号:
TP311
DOI:
10.11992/tis.201511026
摘要:
随着移动智能终端的普及,移动医疗应用已成为当前研究的热点。针对移动医疗环境下个性化健康建议推荐问题,依据用户移动轨迹与职业类型间相似性特点,提出一种基于驻点区域特征向量与用户职业特征向量相结合的相似度计算方法,通过构建相似用户组的方式完成组内用户健康建议信息的共享,最终实现在节约医疗资源的基础上为海量用户提供个性化健康推荐服务的功能。算法测试与分析结果表明了方法的有效性和可实施性,在移动医疗大数据分析应用方面具有广阔的前景和实用价值。
Abstract:
Mobile medical applications have become a hotspot in research with the popularization of mobile intelligent terminals. In response to the problem of personalized recommendation of health advice in the mobile medical environment, a similarity calculation method based on stagnation region eigenvector and user occupation eigenvector was proposed according to the similarity characteristics of users’ mobile trajectory and occupation. The sharing of information about the suggestion of health in a group was completed by constructing similar user groups. Thus, personalized health recommendation services were provided for users with limited medical resources. Results showed the effectiveness and implementation of the algorithm, which has a broad application prospect and practical value in large data analysis and mobile medical application.

参考文献/References:

[1] 谢幸, 郑宇. 基于地理信息的用户行为理解[J]. 计算机学会通讯, 2008, 4(10): 13-21. XIE Xing, ZHENG Yu. User behavior understanding based on geographic information[J]. Computer society news-letter, 2008, 4(10): 13-21.
[2] ZHANG Chengyang, ZHENG Yu, XIE Xing. Map-matching for low-sampling-rate GPS trajectories[C]//Proceedings of ACM SIGSPATIAL Conference on Geographical Information Systems. Seattle, Washington, USA, 2009: 213-221.
[3] YE Yang, ZHENG Yu, CHEN Yukun, et al. Mining individual life pattern based on location history[C]//Proceedings of the International Conference on Mobile Data Management. Taipei, China, 2009: 36-39.
[4] LOU Yin, ZHANG Chengyang, ZHENG Yu, et al. Map- matching for low-sampling-rate GPS trajectories[C]//Proceedings of ACM SIGSPATIAL Conference on Geographical Information Systems. Seattle, Washington, USA, 2009: 69-102.
[5] YE Yang, ZHENG Yu, CHEN Yukun, et al. Mining individual life pattern based on location history[C]//Proceedings of the International Conference on Mobile Data Management. Taipei, China, 2009: 46-50.
[6] ZHENG Yu, LIU Like, WANG Longhao, et al. Learning transportation modes from raw GPS data for geographic application on the web[C]//Proceedings of the 17th International Conference on World Wide Web. Beijing, China, 2008: 45-49.
[7] ZHENG Yu, LI Quannan, CHEN Yukun, et al. Understanding mobility based on GPS data[C]//Proceedings of ACM Conference on Ubiquitous Computing. Seoul, Korea, 2008: 26-31.
[8] ZHENG Yu, CHEN Yukun, LI Quannan, et al. Understanding transportation modes based on GPS data for Web applications[J]. ACM transactions on the Web, 2010, 4(1): 1-36.
[9] ZHENG Yu, ZHANG Lizhu, XIE Xing, et al. Mining interesting locations and travel sequences from GPS trajectories[C]//Proceedings of International Conference on World Wild Web. Madrid, Spain, 2009: 121-125.
[10] LI Quannan, ZHENG Yu, CHEN Yukun, et al. Mining user similarity based on location history[C]//Proceedings of ACM SIGSPATIAL Conference on Geographical Information Systems. Irvine, CA, USA, 2008: 127-131.
[11] ZHENG Yu, ZHANG Lizhu, XIE Xing. Recommending friends and locations based on individual location history[J]. ACM transactions on the Web, 2009, 3(2): 16-21.
[12] ZHENG Yu, ZHANG Lizhu, XIE Xing. Mining correlation between locations using human location history[C]//Proceedings of ACM SIGSPATIAL Conference on Geographical Information Systems. Seattle, Washington, USA, 2009: 145-151.
[13] 王德起, 许菲菲. 基于问卷调查的北京市居民通勤状况分析[J]. 城市发展研究, 2010, 17(12): 98-105. WANG Deqi, XU Feifei. A study on the commuting problems in Beijing-based on the investigation to the citizens of Beijing[J]. Urban development studies, 2010, 17(12): 98-105.
[14] 贾晓朋, 孟斌, 张媛媛. 北京市不同社区居民通勤行为分析[J]. 地域研究与开发, 2015, 34(1): 55-59. JIA Xiaopeng, MENG Bin, ZHANG Yuanyuan. Analysis of the residents commuting behavior in different communities in Beijing city[J]. Areal research and development, 2015, 34(1): 55-59.
[15] Microsoft Research Asia. GeoLife data set[DB/OL]. Beijing: Microsoft Research Asia, 2012. (2012-08-09)
[2015] . http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx.
[16] LI Quannan, ZHENG Yu, XIE Xing, et al. Mining user similarity based on location history[C]//Proceeding of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York, NY, USA, 2008: 1-10.
[17] ZHENG Yu, ZHANG Lizhu, MA Zhengxin, et al. Recommending friends and locations based on individual location history[J]. ACM transactions on the Web, 2008, 5(1): 5-44.
[18] XIAO Xiangye, ZHENG Yu, LUO Qiong, et al. Inferring social ties between users with human location history[J]. Journal of ambient intelligence and humanized computing, 2014, 5(1): 3-19.
[19] GIANNOTTI F, NANNI M, PEDRESCHI D, et al. Trajectory pattern mining[C]//Proceedings of the 13rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining. San Jose, CA, USA, 2007: 330-339.

备注/Memo

备注/Memo:
收稿日期:2015-11-25;改回日期:。
基金项目:辽宁省高等学校杰出青年学者成长计划(LJQ2013038);辽宁工程技术大学博士基金项目(2015-1147).
作者简介:陈万志,男,1977年生,副教授,博士计算机学会会员,主要研究方向为人工智能、计算机过程控制、物联网应用、WebGIS等;林澍,男,1990年生,硕士研究生,主要研究方向为人工智能、物联网应用。
通讯作者:陈万志.E-mail:chenwanzhi@lntu.edu.cn.
更新日期/Last Update: 1900-01-01