[1]任杰,徐海东,干苏,等.基于Hopf振荡器的六足机器人步态CPG模型设计[J].智能系统学报,2016,11(5):627-634.[doi:10.11992/tis.201601036]
 REN Jie,XU Haidong,GAN Su,et al.CPG model design based on hopf oscillator forhexapod robots gait[J].CAAI Transactions on Intelligent Systems,2016,11(5):627-634.[doi:10.11992/tis.201601036]
点击复制

基于Hopf振荡器的六足机器人步态CPG模型设计(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年5期
页码:
627-634
栏目:
学术论文—智能系统
出版日期:
2016-11-01

文章信息/Info

Title:
CPG model design based on hopf oscillator forhexapod robots gait
作者:
任杰 徐海东 干苏 王斌锐
中国计量学院 机电工程学院, 浙江 杭州 310018
Author(s):
REN Jie XU Haidong GAN Su WANG Binrui
College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
关键词:
中枢模式发生器Hopf振荡器六足机器人运动学分析
Keywords:
central pattern generatorHopf oscillatorhexapod robotskinematic analysis
分类号:
TP242
DOI:
10.11992/tis.201601036
摘要:
利用中枢模式发生器实现六足机器人爬行步态是运动仿生的关键。建立机器人坐标系,基于D-H参数求解正运动学;采用Hopf振荡器设计多腿耦合模型;构建由6个CPG单元组成的环形CPG网络拓扑结构,每个CPG单元由2个耦合的Hopf振荡器组成,分别输出髋关节、踝关节运动信号;采用膝踝映射函数方法,将踝关节输出信号映射为踝关节和膝关节角度轨迹,从而降低网络中振荡器个数;通过改变耦合系数保证相邻振荡器的相位互锁,输出稳定平滑信号;搭建实物样机进行步态测试。仿真和实验表明,CPG网络相位差稳定,可实现六足机器人三角步态下的平稳行走,爬行速度约为6.45 cm/s。
Abstract:
The key to bionic motion is a central pattern generator (CPG), which realizes the crawl gait of a hexapod. Firstly, the coordinate system of the robot was set up and the associated forward kinematics were solved based on D-H parameters. Hopf oscillators were then adopted into the design of coupling models involving multiple legs. A CPG ring topology structure was established using six CPG units, with each CPG unit consisting of two coupled Hopf oscillators, which output the hip and ankle joint signals, respectively. In order to control each joint (of a hexapod robot), a knee-ankle mapping function was used. The function mapped the output of the ankle to joint angles for both the knees and ankles. The number of oscillators in the CPG network was reduced using this method. Meanwhile, the coupling coefficient was changed to guarantee the phase interlock of adjacent oscillators and give a stable and smooth signal. Finally, a physical prototype was constructed for testing the robotic gait. The simulations and test results show that this CPG network has a stable phase difference, which ensures that hexapod robot can walk stably in a triangular gait and a crawling speed of approximately 6.45 cm/sec can be achieved.

参考文献/References:

[1] JAN IJSPEERT A J. Central pattern generators for locomotion control in animals and robots:a review[J]. Neural networks, 2008, 21(4):642-653.
[2] 吴正兴, 喻俊志, 谭民. 两类仿鲹科机器鱼倒游运动控制方法的对比研究[J]. 自动化学报, 2013, 39(12):2232-2242. WU Zhengxing, YU Junzhi, TAN Min. Comparison of two methods to implement backward swimming for a carangiform robotic fish[J]. Acta automatica sinica, 2013, 39(12):2232-2242.
[3] WU Xiaodong, MA Shugen. Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change[J]. Autonomous robots, 2010, 28(3):283-294.
[4] 高琴, 王哲龙, 赵红宇. 基于Hopf振荡器实现的蛇形机器人的步态控制[J]. 机器人, 2014, 36(6):688-696. GAO Qin, WANG Zhelong, ZHAO Hongyu. Gait control for a snake robot based on Hopf oscillator model[J]. Robot, 2014, 36(6):688-696.
[5] SEO K, CHUNG S J, SLOTINE J J E. CPG-based control of a turtle-like underwater vehicle[J]. Autonomous robots, 2010, 28(3):247-269.
[6] LIU C J, FAN Z, SEO K, Fan Z, et al. Synthesis of matsuoka-based neuron oscillator models in locomotion control of robots[C]//IEEEProceedings of the Third Global Congress on Intelligent Systems (GCIS), 2012 Third Global Congress, Wuhan, China, 2012:342-347.
[7] MATSUOKA K. Sustained oscillations generated by mutually inhibiting neurons with adaptation[J]. Biological cybernetics, 1985, 52(6):367-376.
[8] FUKUOKA Y, KIMURA H, COHEN A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts[J]. The international journal of robotics research, 2003, 22(3/4):187-202.
[9] YU Junzhi, TAN Min, CHEN Jian, et al. A survey on CPG-inspired control models and system implementation[J]. IEEE transactions on neural networks and learning systems, 2014, 25(3):441-456.
[10] BREAKSPEAR M, HEITMANN S, DAFFERTSHOFER A. Generative models of cortical oscillations:neurobiological implications of the Kuramoto model[J]. Frontiers in human neuroscience, 2010, (4):190-14.
[11] JAN IJSPEERT A J, CRESPI A, RYCZKO D, et al. From swimming to walking with a salamander robot driven by a spinal cord model[J]. Science, 2007, 315(5817):1416-1420.
[12] RIGHETTI L, JAN IJSPEERT A J. Pattern generators with sensory feedback for the control of quadruped locomotion[C]//Proceedings of IEEE International Conference on Robotics and& Automation. Pasadena, CA, USA, 2008:819-824.
[13] MARK W. SPONG, S. HUTCHINSON, M. VIDYASAGAR. Robot modeling and con trol[M]. Hobokon, New Jekey, USA:John Wiley and Sons Inc., 2005:65-74.
[14] 于海涛. 基于非线性振子的CPG步态生成器及其运动控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2009:10-11. YU Haitao. Research on CPG gait generator based on nonlinear oscillator and its locomotion control[D]. Harbin, China:Harbin Institute of Technology, 2009:10-11.
[15] FRIGON A, ROSSIGNOL S. Experiments and models of sensorimotor interactions during locomotion[J]. Biological cybernetics, 2006, 95(6):607-627.

相似文献/References:

[1]王耀威,纪志坚,翟海川.仿生机器鱼运动控制方法综述[J].智能系统学报,2014,9(03):276.[doi:10.3969/j.issn.1673-4785.201309004]
 WANG Yaowei,JI Zhijian,ZHAI Haichuan.A survey on motion control of the biomimetic robotic fish[J].CAAI Transactions on Intelligent Systems,2014,9(5):276.[doi:10.3969/j.issn.1673-4785.201309004]

备注/Memo

备注/Memo:
收稿日期:2016-01-28。
基金项目:国家自然科学基金项目(51575503);浙江省自然科学基金项目(LY14F030021).
作者简介:任杰,女,1990年生,硕士研究生,主要研究方向为仿生机器人运动控制;徐海东,男,1991年生,硕士研究生,主要研究方向为仿生机器人运动控制;王斌锐,男,1978年生,博士,教授,主要研究方向为仿生机器人及其智能控制。
通讯作者:王斌锐.E-mail:wangbinrui@163.com
更新日期/Last Update: 1900-01-01