[1]闫玲玲,陈增强,张青.基于度和聚类系数的中国航空网络重要性节点分析[J].智能系统学报,2016,11(5):586-593.[doi:10.11992/tis.201601024]
 YAN Lingling,CHEN Zengqiang,ZHANG Qing.Analysis of key nodes in China’s aviation network basedon the degree centrality indicator and clustering coefficient[J].CAAI Transactions on Intelligent Systems,2016,11(5):586-593.[doi:10.11992/tis.201601024]
点击复制

基于度和聚类系数的中国航空网络重要性节点分析(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年5期
页码:
586-593
栏目:
出版日期:
2016-11-01

文章信息/Info

Title:
Analysis of key nodes in China’s aviation network basedon the degree centrality indicator and clustering coefficient
作者:
闫玲玲12 陈增强123 张青3
1. 南开大学 计算机与控制工程学院, 天津 300350;
2. 南开大学 智能机器人技术天津市重点实验室, 天津 300350;
3. 中国民航大学 理学院, 天津 300300
Author(s):
YAN Lingling12 CHEN Zengqiang123 ZHANG Qing3
1. College of Computer and Control Engineering, Nankai University, Tianjin 300350, China;
2. Key Laboratory of Intelligent Robotics of Tianjin, Nankai University, Tianjin 300350, China;
3. College of Science, Civil Aviation University of China, Tianjin 300300, China
关键词:
航空网络节点重要性聚类系数复杂网络
Keywords:
aviation networkkey nodesdegreeclustering coefficientcomplex network
分类号:
N94
DOI:
10.11992/tis.201601024
摘要:
运用度中心性、接近中心性、介数中心性、特征向量中心性和半局部中心性5种方法,对中国航空网络进行节点重要性排序;对重要节点分别进行蓄意攻击和随机攻击,采用脆弱性指标验证排序方法的有效性,仿真结果表明介数中心性能够更准确地刻画中国航空网络中节点的重要性;在航空网络的背景下,将节点的直接影响力和节点邻居之间连接的紧密程度结合起来,提出了一种基于度和聚类系数的新指标,经中国航空网络实例验证,该指标的评价准确性仅次于介数中心性,但是其时间复杂度比介数中心性低很多。
Abstract:
This paper determines the key nodes of China’s aviation network based on degree centrality, closeness centrality,‘betweenness’centrality, eigenvector centrality, semi-local centrality indicators, and then ranks these nodes in descending order of importance. Using a vulnerability index and reviewing risks from deliberate and random attack the effectiveness of the sorting methods is then evaluated. It is apparent from the corresponding vulnerability indices that the aviation network of China is most vulnerable to targeted attacks according to the betweenness centrality indicator. Moreover, based on the aviation network, this paper proposes a new evaluation method, which takes into account not only the number of neighbors, but also the clustering coefficient. Focusing on China’s aviation network, the experimental results demonstrate that the evaluation accuracy of the new index ranks only second to the betweenness centrality, and is more efficient compared with betweenness centrality as regards time complexity.

参考文献/References:

[1] 刘宏鲲, 周涛. 中国城市航空网络的实证研究与分析[J]. 物理学报, 2007, 56(1):106-112. LIU Hongkun, ZHOU Tao. Empirical study of Chinese city airline network[J]. Acta physica sinica, 2007, 56(1):106-112.
[2] 刘宏鲲. 中国航空网络的结构及其影响因素分析[D]. 成都:西南交通大学, 2007. LIU Hongkun. Analyzing the structure of Chinese aviation network and impact factors[D]. Chengdu:Southwest Jiaotong University, 2007.
[3] 姚红光, 朱丽萍. 基于仿真分析的中国航空网络鲁棒性研究[J]. 武汉理工大学学报:交通科学与工程版, 2012, 36(1):42-46. YAO Hongguang, ZHU Liping. Research on robustness of China’s aviation network based on simulation analysis[J]. Journal of Wuhan university of technology:transportation science & engineering, 2012, 36(1):42-46.
[4] 任卓明, 邵凤, 刘建国, 等. 基于度与集聚系数的网络节点重要性度量方法研究[J]. 物理学报, 2013, 62(12):128901. REN Zhuoming, SHAO Feng, LIU Jianguo, et al. Node importance measurement based on the degree and clustering coefficient information[J]. Acta physica sinica, 2013, 62(12):128901.
[5] 张珍, 张振宇, 宋蔓蔓. 一种基于最短路径介数的重要节点发现算法[J]. 计算机工程与应用, 2013, 49(21):98-100. ZHANG Zhen, ZHANG Zhenyu, SONG Manman. Important node searching algorithm based on shortest-path betweeness[J]. Computer engineering and applications, 2013, 49(21):98-100.
[6] BURT R S, MINOR M J. Applied Network Analysis[M]. Newbury Park, CA:Sage, 1983:195-222.
[7] 赫南, 李德毅, 淦文燕, 等. 复杂网络中重要性节点发掘综述[J]. 计算机科学, 2007, 34(12):1-5, 17. HE Nan, LI Deyi, GAN Wenyan, et al. Mining vital nodes in complex networks[J]. Computer science, 2007, 34(12):1-5, 17.
[8] BONACICH P. Factoring and weighting approaches to status scores and clique identification[J]. The journal of mathematical sociology, 1972, 2(1):113-120.
[9] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京:高等教育出版社, 2012. WANG Xiaofan, LI Xiang, CHEN Guanrong. Network science:an introduction[M]. Beijing:Higher Education Press, 2012.
[10] FREEMAN L C. Centrality in social networks conceptual clarification[J]. Social networks, 1978, 1(3):215-239.
[11] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Physical review letters, 2001, 87:198701.
[12] FREEMAN L C. A set of measures of centrality based upon betweenness[J]. Sociometry, 1977, 40(1):35-41.
[13] CHEN Duanbing, LÜ Linyuan, SHANG Mingsheng, et al. Identifying influential nodes in complex networks[J]. Physica A, 2012, 391(4):1777-1787.
[14] NEWMAN M E J. The structure and function of complex networks[J]. SIAM review, 2003, 45(2):167-256.
[15] 王姣娥, 莫辉辉, 金凤君. 中国航空网络空间结构的复杂性[J]. 地理学报, 2009, 64(8):899-910. WANG Jiao’e, MO Huihui, JIN Fengjun. Spatial structural characteristics of Chinese aviation network based on complex network theory[J]. Acta geographica sinica, 2009, 64(8):899-910.
[16] LATORA V, MARCHIORI M. Efficient behavior of small-world networks[J]. Physical review letters, 2001, 87(19):198701.
[17] SCHNEIDER C M, MOREIRA A A, ANDRADE JR J S, et al. Mitigation of malicious attacks on networks[J]. Proceedings of the national academy of sciences of the United States of America, 2011, 108(10):3838-3841.
[18] IYER S, KILLINGBACK T, SUNDARAM B, et al. Attack robustness and centrality of complex networks[J]. PLoS one, 2013, 8(4):e59613.
[19] UGANDER J, BACKSTROM L, MARLOW C, et al. Structural diversity in social contagion[J]. Proceedings of the national academy of sciences of the United States of America, 2012, 109(16):5962-5966.
[20] CENTOLA D. The spread of behavior in an online social network experiment[J]. Science, 2010, 329(5996):1194-1197.
[21] CHEN Duanbing, GAO Hui, LÜ Linyuan, et al. Identifying influential nodes in large-scale directed networks:the role of clustering[J]. PLoS one, 2013, 8(10):e77455.

备注/Memo

备注/Memo:
收稿日期:2016-01-15。
基金项目:国家自然科学基金项目(61573199);天津自然科学基金项目(14JCYBJC18700).
作者简介:闫玲玲,女,1990年生,硕士研究生,主要研究方向为复杂网络;陈增强,男,1964年生,教授,博士生导师,主要研究方向为智能控制、智能信息处理,曾获天津市自然科学二等奖,发表学术论文100余篇;张青,女,1965年生,教授,主要研究方向为复杂系统建模与控制、多智能体系统,发表学术论文30余篇。
通讯作者:闫玲玲.E-mail:yanlingling@mail.nankai.edu.cn
更新日期/Last Update: 1900-01-01