[1]张毅,尹春林,蔡军.混合脑电信号及视觉信息的智能轮椅人机交互系统[J].智能系统学报,2016,11(5):648-654.[doi:10.11992/tis.201511004]
 ZHANG Yi,YIN Chunlin,CAI Jun.On a hybrid electroencephalograph and visual information intelligentwheelchair human-machine interactive system[J].CAAI Transactions on Intelligent Systems,2016,11(5):648-654.[doi:10.11992/tis.201511004]
点击复制

混合脑电信号及视觉信息的智能轮椅人机交互系统

参考文献/References:
[1] 涂建成. 脑电信号控制智能轮椅的研究[D]. 杭州:杭州电子科技大学, 2011. TU Jiancheng. The research for control intelligent wheelchair based on EEG[D]. Hangzhou:Hangzhou Dianzi University, 2011.
[2] REBSAMEN B, GUAN Cuntai, ZHANG Haihong, et al. A brain controlled wheelchair to navigate in familiar environments[J]. IEEE transactions on neural systems and rehabilitation engineering, 2010, 18(6):590-598.
[3] HOW T V, WANG R H, MIHAILIDIS A. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments[J]. Journal of neuroengineering and rehabilitation, 2013, 10(1):90.
[4] JI Y, HWANG J, KIM E Y. An intelligent wheelchair using situation awareness and obstacle detection[J]. Procedia-social and behavioral sciences, 2013, 97:620-628.
[5] ORTNER R, ALLISON B Z, KORISEK G, et al. An SSVEP BCI to control a hand orthosis for persons with tetraplegia[J]. IEEE transactions on neural systems and rehabilitation engineering, 2011, 19(1):1-5.
[6] 何海洋. 基于多类意识任务识别的电动轮椅脑电控制方法研究[D].杭州:杭州电子科技大学, 2012. HE Haiyang. The research of EEG control methods of power wheelchair based on muti-class mental tasks recognition[D]. Hangzhou:Hangzhou Dianzi University, 2012.
[7] 李恋. 结合EOG和EEG的人机交互系统的研究与实现[D]. 合肥:安徽大学, 2012. LI Lian. The research and implementation of the human-computer interaction system based on the combination of EOG and EEG[D]. Hefei:Anhui University, 2012.
[8] WEI Lai, HU Huosheng. A multi-modal human machine interface for controlling an intelligent wheelchair using face movements[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics. Karon Beach, Phuket:IEEE, 2011:2850-2855.
[9] ROY R N, BONNET S, CHARBONNIER S, et al. Mental fatigue and working memory load estimation:interaction and implications for EEG-based passive BCI[C]//Proceedings of the 201335th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka:IEEE, 2013:6607-6610.
[10] 张毅, 梅彦玲, 罗元. 基于改进CSSD的运动想象脑电信号特征提取[J]. 青岛科技大学学报:自然科学版, 2015, 36(1):94-101.ZHANG Yi, MEI Yanling, LUO Yuan. Feature extraction of motor imagery in EEG based on improved CSSD[J]. Journal of Qingdao university of science and technology:natural science edition, 2015, 36(1):94-101.
[11] SHI Jianjun, YUAN Qingwu, ZHOU Lawu, et al. Melancholia EEG classification based on CSSD and SVM[C]//Proceedings of SPIE 8285, 2010 International Conference on Graphic and Image Processing. Cairo, Egypt:SPIE, 2011:14-18.
[12] SHIBANOKI T, SHIMA K, TSUJI T, et al. A Quasi-Optimal channel selection method for bioelectric signal classification using a partial Kullback-Leibler information measure[J]. IEEE transactions on biomedical engineering, 2013, 60(3):853-861.
[13] PERDUCA V, NUEL G. Measuring the influence of observations in HMMs through the Kullback-Leibler distance[J]. IEEE signal processing letters, 2013, 20(2):145-148.
[14] 熊池亮. 基于AdaBoost算法的驾驶员疲劳驾驶检测[D]. 成都:电子科技大学, 2013. XIONG Chiliang. Detection of driver’s fatigue driving based on Adaboost algorithm[D]. Chengdu:University of Electronic Science and Technology of China, 2013.
[15] 王奕直, 周凌霄, 孔万增. 基于Adaboost的疲劳驾驶眨眼检测[J]. 杭州电子科技大学学报, 2013, 33(4):35-38. WANG Yizhi, ZHOU Lingxiao, KONG Wanzeng. Eye blinking detecting in driving fatigue based on Adaboost[J]. Journal of Hangzhou dianzi university, 2013, 33(4):35-38.
[16] YOO J, YAN Long, EL-DAMAK D, et al. An 8-Channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor[J]. IEEE journal of solid-state circuits, 2013, 48(1):214-228.
[17] NEU D, MAIRESSE O, VERBANCK P, et al. Non-REM sleep EEG power distribution in fatigue and sleepiness[J]. Journal of psychosomatic research, 2014, 76(4):286-291.

备注/Memo

收稿日期:2015-11-05。
基金项目:科技部国际合作项目(2010DFA12160);国家自然科学基金项目(60905066);国家自然科学基金项目(51075420).
作者简介:张毅,男,1966年生,教授,博士生导师,主要研究方向为机器人及应用、数据融合、信息无障碍技术;尹春林,男,1990年生,硕士研究生,主要研究方向为多模人机交互;蔡军,男,1977年生,副教授,主要研究方向为机器人技术及应用、生物信号处理及应用、模式识别。
通讯作者:尹春林.E-mail:659825946@qq.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134