[1]张毅,尹春林,蔡军.混合脑电信号及视觉信息的智能轮椅人机交互系统[J].智能系统学报,2016,11(5):648-654.[doi:10.11992/tis.201511004]
 ZHANG Yi,YIN Chunlin,CAI Jun.On a hybrid electroencephalograph and visual information intelligentwheelchair human-machine interactive system[J].CAAI Transactions on Intelligent Systems,2016,11(5):648-654.[doi:10.11992/tis.201511004]
点击复制

混合脑电信号及视觉信息的智能轮椅人机交互系统(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年5期
页码:
648-654
栏目:
出版日期:
2016-11-01

文章信息/Info

Title:
On a hybrid electroencephalograph and visual information intelligentwheelchair human-machine interactive system
作者:
张毅 尹春林 蔡军
重庆邮电大学 信息无障碍工程研发中心, 重庆 400065
Author(s):
ZHANG Yi YIN Chunlin CAI Jun
Information Accessibility Engineering R & D Center, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
关键词:
EEG视觉信息样本更新人机交互
Keywords:
EEGvisual informationsample updatedhuman-machine interaction
分类号:
TP242.6
DOI:
10.11992/tis.201511004
摘要:
针对单一脑电信号人机交互系统中受试者长时间运动想象过程中精神极易产生疲乏,导致脑电信号有用信息量不足造成系统误识别的问题,本文提出一种视觉信息辅助脑电信号的人机交互系统。该系统通过在脑电信号实时操作中不断地识别眼睛状态,产生一种新的样本更新策略,更新的视觉信息作为系统的反馈,对人机交互闭环控制系统起到有效的校正作用。通过在智能轮椅平台走一个“8”字形固定轨迹的实验,实验结果表明:视觉信息的加入有效地避免了单一脑电信号控制智能轮椅由于疲乏问题造成的误识别问题,具有较好的稳定性和鲁棒性,表明了该人机交互方法的可行性。
Abstract:
To address error recognition problems created by mental fatigue when a human subject partakes in a single motor imager process for a long period of time, a visual information assisted EEG (electroencephalograph) human-machine interactive control system was proposed. The system produces a new sample updated strategy, with the‘state’of the eyes being recognized by the improved Adaboost algorithm in real-time and the recognition result being used to decide which EEG signal to update as the model parameter for human-machine interaction. An experiment on controlling an intelligent wheelchair off a fixed trajectory with a‘8’glyph was undertaken. The results show that visual information is adopted effectively by the intelligent wheelchair users to avoid the fatique-related error recognition problem with good levels of efficiency; thus proving that the interactive method is feasible.

参考文献/References:

[1] 涂建成. 脑电信号控制智能轮椅的研究[D]. 杭州:杭州电子科技大学, 2011. TU Jiancheng. The research for control intelligent wheelchair based on EEG[D]. Hangzhou:Hangzhou Dianzi University, 2011.
[2] REBSAMEN B, GUAN Cuntai, ZHANG Haihong, et al. A brain controlled wheelchair to navigate in familiar environments[J]. IEEE transactions on neural systems and rehabilitation engineering, 2010, 18(6):590-598.
[3] HOW T V, WANG R H, MIHAILIDIS A. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments[J]. Journal of neuroengineering and rehabilitation, 2013, 10(1):90.
[4] JI Y, HWANG J, KIM E Y. An intelligent wheelchair using situation awareness and obstacle detection[J]. Procedia-social and behavioral sciences, 2013, 97:620-628.
[5] ORTNER R, ALLISON B Z, KORISEK G, et al. An SSVEP BCI to control a hand orthosis for persons with tetraplegia[J]. IEEE transactions on neural systems and rehabilitation engineering, 2011, 19(1):1-5.
[6] 何海洋. 基于多类意识任务识别的电动轮椅脑电控制方法研究[D].杭州:杭州电子科技大学, 2012. HE Haiyang. The research of EEG control methods of power wheelchair based on muti-class mental tasks recognition[D]. Hangzhou:Hangzhou Dianzi University, 2012.
[7] 李恋. 结合EOG和EEG的人机交互系统的研究与实现[D]. 合肥:安徽大学, 2012. LI Lian. The research and implementation of the human-computer interaction system based on the combination of EOG and EEG[D]. Hefei:Anhui University, 2012.
[8] WEI Lai, HU Huosheng. A multi-modal human machine interface for controlling an intelligent wheelchair using face movements[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics. Karon Beach, Phuket:IEEE, 2011:2850-2855.
[9] ROY R N, BONNET S, CHARBONNIER S, et al. Mental fatigue and working memory load estimation:interaction and implications for EEG-based passive BCI[C]//Proceedings of the 201335th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka:IEEE, 2013:6607-6610.
[10] 张毅, 梅彦玲, 罗元. 基于改进CSSD的运动想象脑电信号特征提取[J]. 青岛科技大学学报:自然科学版, 2015, 36(1):94-101.ZHANG Yi, MEI Yanling, LUO Yuan. Feature extraction of motor imagery in EEG based on improved CSSD[J]. Journal of Qingdao university of science and technology:natural science edition, 2015, 36(1):94-101.
[11] SHI Jianjun, YUAN Qingwu, ZHOU Lawu, et al. Melancholia EEG classification based on CSSD and SVM[C]//Proceedings of SPIE 8285, 2010 International Conference on Graphic and Image Processing. Cairo, Egypt:SPIE, 2011:14-18.
[12] SHIBANOKI T, SHIMA K, TSUJI T, et al. A Quasi-Optimal channel selection method for bioelectric signal classification using a partial Kullback-Leibler information measure[J]. IEEE transactions on biomedical engineering, 2013, 60(3):853-861.
[13] PERDUCA V, NUEL G. Measuring the influence of observations in HMMs through the Kullback-Leibler distance[J]. IEEE signal processing letters, 2013, 20(2):145-148.
[14] 熊池亮. 基于AdaBoost算法的驾驶员疲劳驾驶检测[D]. 成都:电子科技大学, 2013. XIONG Chiliang. Detection of driver’s fatigue driving based on Adaboost algorithm[D]. Chengdu:University of Electronic Science and Technology of China, 2013.
[15] 王奕直, 周凌霄, 孔万增. 基于Adaboost的疲劳驾驶眨眼检测[J]. 杭州电子科技大学学报, 2013, 33(4):35-38. WANG Yizhi, ZHOU Lingxiao, KONG Wanzeng. Eye blinking detecting in driving fatigue based on Adaboost[J]. Journal of Hangzhou dianzi university, 2013, 33(4):35-38.
[16] YOO J, YAN Long, EL-DAMAK D, et al. An 8-Channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor[J]. IEEE journal of solid-state circuits, 2013, 48(1):214-228.
[17] NEU D, MAIRESSE O, VERBANCK P, et al. Non-REM sleep EEG power distribution in fatigue and sleepiness[J]. Journal of psychosomatic research, 2014, 76(4):286-291.

备注/Memo

备注/Memo:
收稿日期:2015-11-05。
基金项目:科技部国际合作项目(2010DFA12160);国家自然科学基金项目(60905066);国家自然科学基金项目(51075420).
作者简介:张毅,男,1966年生,教授,博士生导师,主要研究方向为机器人及应用、数据融合、信息无障碍技术;尹春林,男,1990年生,硕士研究生,主要研究方向为多模人机交互;蔡军,男,1977年生,副教授,主要研究方向为机器人技术及应用、生物信号处理及应用、模式识别。
通讯作者:尹春林.E-mail:659825946@qq.com
更新日期/Last Update: 1900-01-01