[1]张龙祥,廖祖华,王琪,等.新型软域[J].智能系统学报编辑部,2015,10(6):858-864.[doi:10.11992/tis.201507040]
 ZHANG Longxiang,LIAO Zuhua,WANG Qi,et al.New type of soft fields[J].CAAI Transactions on Intelligent Systems,2015,10(6):858-864.[doi:10.11992/tis.201507040]
点击复制

新型软域(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年6期
页码:
858-864
栏目:
出版日期:
2015-12-25

文章信息/Info

Title:
New type of soft fields
作者:
张龙祥1 廖祖华12 王琪1 王瑞云1 刘维龙1
1. 江南大学理学院, 江苏无锡 214122;
2. 江南大学智能系统与网络计算研究所, 江苏无锡 214122
Author(s):
ZHANG Longxiang1 LIAO Zuhua12 WANG Qi1 WANG Ruiyun1 LIU Weilong1
1. School of Science, Jiangnan University, Wuxi 214122, China;
2. Institute of Intelligence System & Network Computing, Jiangnan University, Wuxi 214122, China
关键词:
软集新型软域对偶软集同态映射软集运算
Keywords:
soft setnew type of soft fielddual soft sethomomorphic mappingsoft set operation
分类号:
TP18;O159
DOI:
10.11992/tis.201507040
摘要:
为获得新型软域的新概念,采用与传统软代数不同的定义方法,将软集的参数集赋予域的代数结构。并且得到了新型软域的充要条件。利用软集运算中的限制交运算,得到了2个新型软域的限制交仍是新型软域。运用对偶软集的方法给出了新型软域的等价刻画。最后利用域的同态映射诱导出软集的同态像与原像,并得到了新型软域的同态像和原像仍是新型软域的性质。以这种方式得到的新型软域比通常的软域有更深刻的结果,为今后新型软代数的研究提供了基础。
Abstract:
To develop a concept for a new type of soft field, we introduce a method that endows a parameter set with a field algebra structure that differs from that of traditional soft algebras. We then obtain the necessary and sufficient condition of a new type of soft field. By performing a soft-set intersection operation, we prove that the intersection operation of two new soft-field types still represents a new type of soft field. In addition, we provide equivalent characterizations of this new type of soft field by applying dual soft sets. Finally, we induce homomorphic and inverse images of these soft sets by homomorphically mapping the fields and deriving the properties of the homomorphic and inverse images of this new type of soft field. Using this method to achieve this new type of soft field, we achieve more profound results when compared with ordinary soft fields and lay the foundation for future research into this new type of soft algebra.

参考文献/References:

[1] MOLODTSOV D. Soft set theory-first results[J]. Computers & Mathematics with Applications, 1999, 37(4/5):19-31.
[2] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[3] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[4] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[5] MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers & Mathematics with Applications, 2003, 45(4-5):555-562.
[6] MAJI P K, ROY A R. An application of soft sets in a decision making problem[J]. Computers & Mathematics with Applications, 2002, 44(8/9):1077-1083.
[7] ALI M I, FENG Feng, LIU Xiaoyan, et al. On some new operations in soft set theory[J]. Computers & Mathematics with Applications, 2009, 57(9):1547-1553.
[8] AKTA? H, çA?MAN N. Soft sets and soft groups[J]. Information Sciences, 2007, 177(13):2726-2735.
[9] JUN Y B. Soft BCK/BCI-algebras[J]. Computers & Mathematics with Applications, 2008, 56(5):1408-1413.
[10] ACAR U, KOYUNCU F, TANAY B. Soft sets and soft rings[J]. Computers & Mathematics with Applications, 2010, 59(11):3458-3463.
[11] FENG Feng, JUN Y B, ZHAO Xianzhong. Soft semirings[J]. Computers & Mathematics with Applications, 2008, 56(10):2621-2628.
[12] 伏文清, 李生刚. 软BCK代数[J]. 计算机工程与应用, 2010, 46(10):5-6. FU Wenqing, LI Shenggang. Soft BCK algebra[J]. Computer Engineering and Applications, 2010, 46(10):5-6.
[13] 温永川. 关于软集的研究[D]. 大连:辽宁师范大学, 2008:18-19. WEN Yongchuan. The study on soft set[D]. Dalian:Liaoning Normal University, 2008:18-19.
[14] 廖祖华, 芮眀力. 软坡[J]. 计算机工程与应用, 2012, 48(2):30-32. LIAO Zuhua, RUI Mingli. Soft inclines[J]. Computer Engineering and Applications, 2012, 48(2), 30-32.
[15] 殷霞, 廖祖华, 朱晓英, 等. 软集与新型软子群[J]. 计算机工程与应用, 2012, 48(33):40-43, 62. YIN Xia, LIAO Zuhua, ZHU Xiaoying, et al. Soft sets and new soft subgroups[J]. Computer Engineering and Applications, 2012, 48(33):40-43, 62.
[16] YIN Xia, LIAO Zuhua. Study on soft groups[J]. Journal of Computers, 2013, 8(4):960-967.
[17] ZHENG Gaoping, LIAO Zuhua, WANG Nini, et al. Soft lattice implication subalgebras[J]. Applied Mathematics and Information Sciences, 2013, 7(3):1181-1186.
[18] 关贝贝, 廖祖华, 朱晓英, 等. 软子半群[J]. 模糊系统与数学, 2014, 28(4):39-44. GUAN Beibei, LIAO Zuhua, ZHU Xiaoying, et al. Soft subsemigroups[J]. Fuzzy Systems and Mathematics, 2014, 28(4):39-44.
[19] 赵迪, 廖祖华, 朱晓英, 等. 半群的软理想[J]. 模糊系统与数学, 2014, 28(4):45-50. ZHAO Di, LIAO Zuhua, ZHU Xiaoying, et al. Soft ideals of semigroups[J]. Fuzzy Systems and Mathematics, 2014, 28(4):45-50.
[20] 叶婷, 廖祖华, 朱晓英, 等. 半群的软完全素理想[J]. 模糊系统与数学, 2014, 28(3):27-31. YE Ting, LIAO Zihua, ZHU Xiaoying, et al. Soft completely prime ideals of semigroups[J]. Fuzzy Systems and Mathematics, 2014, 28(3):27-31.
[21] 叶灵军, 廖祖华, 朱晓英, 等. 软完全正则子半群[J]. 工程数学学报, 2014, 31(3):341-346. YE Lingjun, LIAO Zuhua, ZHU Xiaoying, et al. Soft completely regular sub-semigroups[J]. Chinese Journal of Engineering Mathematics, 2014, 31(3):341-346.
[22] 林东岱. 代数基础与有限域[M]. 北京:高等教育出版社, 2006.
[23] 南基洙. 域和Galois理论[M]. 北京:科学出版社, 2009.

备注/Memo

备注/Memo:
收稿日期:2015-07-30;改回日期:。
基金项目:国家自然科学基金资助项目(61170121);国家大学生创新训练资助项目(201310295028);江南大学大学生创新训练资助项目(2014203).
作者简介:张龙祥,男,1993,硕士研究生,主要研究方向为软计算。廖祖华,男,1957,教授,主要研究方向为人工智能、模糊与粗糙代数,广义逆理论及应用。在专业杂志与国内外会议等发表学术论文130余篇,其中被SCI和EI检索30余篇。主持省自然科学基金项目1项。王琪,女,1994,硕士研究生,主要研究方向为软计算。
通讯作者:廖祖华.E-mail:liaozuhua57@163.com.
更新日期/Last Update: 1900-01-01