[1]邹丽,谭雪微,温欣,等.真值限定的语言真值直觉模糊推理[J].智能系统学报编辑部,2015,10(5):797-802.[doi:10.11992/tis.201410006]
 ZOU Li,TAN Xuewei,WEN Xin,et al.Linguistic truth-valued intuitionistic fuzzy reasoning with truth-valued qualifications[J].CAAI Transactions on Intelligent Systems,2015,10(5):797-802.[doi:10.11992/tis.201410006]
点击复制

真值限定的语言真值直觉模糊推理(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年5期
页码:
797-802
栏目:
出版日期:
2015-10-25

文章信息/Info

Title:
Linguistic truth-valued intuitionistic fuzzy reasoning with truth-valued qualifications
作者:
邹丽12 谭雪微1 温欣1 刘新3
1. 辽宁师范大学 计算机与信息技术学院, 辽宁 大连 116081;
2. 南京大学 计算机软件新技术国家重点实验室, 江苏 南京 210093;
3. 辽宁师范大学 数学学院, 辽宁 大连 116081
Author(s):
ZOU Li12 TAN Xuewei1 WEN Xin1 LIU Xin3
1. School of Computer and Information Technology, Liaoning Normal University, Dalian 116081, China;
2. State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China;
3. School of Mathematics, Liaoning Normal University, Dalian 116081, China
关键词:
直觉模糊集真值限定犹豫度相容度推理
Keywords:
intuitionistic fuzzy setstruth-valued qualificationshesitancy degreeconsistency degreereasoning
分类号:
TP181
DOI:
10.11992/tis.201410006
文献标志码:
A
摘要:
为了更贴近人类语言的表达,减少推理过程中信息的损失,在直觉模糊逻辑推理的基础上,结合语言真值格蕴涵代数,提出了真值限定的语言真值直觉模糊推理方法。研究了语言真值直觉模糊犹豫度、相容度、不相容度及其相关性质,并通过语言真值直觉模糊相容度的计算,对推理真值进行限定,给出语言真值直觉模糊推理模型的真值限定推理方法。设计推理算法,并将算法应用于实例中。实例说明,该方法在处理同时具有可比性和不可比性的语言真值直觉模糊推理问题中更有效。
Abstract:
In order to help linguistic information be more natural, as well as reduce loss of information while reason-ing, this paper proposes a method for linguistic truth-valued intuitionistic fuzzy reasoning with truth-valued qualifications, by combining with the linguistic truth-valued lattice implication algebra. This paper studies the concepts of linguistic truth-valued intuitionistic fuzzy hesitancy degree, consistency degree, incompatibility degree, and related properties. By calculation of linguistic truth-valued intuitionistic fuzzy consistency degree, truth-value reasoning is reduced. The method of truth-valued qualifications reasoning is given and further detailed steps for reasoning com-putation are demonstrated. An example is given to illustrate that the method is more effective in dealing with linguis-tic truth-valued intuitionistic fuzzy reasoning with both comparability and incomparability.

参考文献/References:

[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] ATANASSOV K T. More on intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 33(1):37-45.
[4] XU Yang, QIN Keyun, LIN Jun, et al. L-valued propositional logic Lvpl[J]. Information Sciences, 1999, 114(1-4):205-235.
[5] 徐扬. 格蕴涵代数[J]. 西南交通大学学报, 1993(1):20-27.XU Yang. Lattice implication algebra[J]. Journal of Southwest Jiaotong University, 1993(1):20-27.
[6] 夏佩伦. 不确定性推理方法研究[J]. 火力与指挥控制, 2010, 35(11):87-91. XIA Peilun. Comments on techniques for inference with uncertainty[J]. Fire Control & Command Control, 2010, 35(11):87-91.
[7] 陈图云, 孟艳平. 模糊集相似度限定推理方法[J]. 工程数学学报, 2005, 22(2):346-348. CHEN Tuyun, MENG Yanping. The reasoning method by fuzzy set similarity degree[J]. Chinese Journal of Engineering Mathematics, 2005, 22(2):346-348.
[8] 雷英杰, 王宝树, 路艳丽. 基于直觉模糊逻辑的近似推理方法[J]. 控制与决策, 2006, 21(3):305-310. LEI Yingjie, WANG Baoshu, LU Yanli. Approximate rea-soning method based on intuitionistic fuzzy logic[J]. Control and Decision, 2006, 21(3):305-310.
[9] 雷英杰, 汪竞宇, 吉波, 等. 真值限定的直觉模糊推理方法[J]. 系统工程与电子技术, 2006, 28(2):234-236.LEI Yingjie, WANG Jingyu, JI Bo, et al. Technique for in-tuitionistic fuzzy reasoning with truth qualifications[J]. Sys-tems Engineering and Electronics, 2006, 28(2):234-236.
[10] 王毅, 雷英杰. 基于直觉模糊逻辑的插值推理方法[J]. 系统工程与电子技术, 2008, 30(10):1944-1948. WANG Yi, LEI Yingjie. Techniques for interpolation rea-soning based on intuitional fuzzy logic[J]. Systems Engineering and Electronics, 2008, 30(10):1944-1948.
[11] 赖家骏, 徐扬. 基于语言真值格值一阶逻辑的不确定性推理的语法[J]. 模糊系统与数学, 2011, 25(2):1-60. LAI Jiajun, XU Yang. Syntax of uncertainty reasoning based on linguistic truth-valued lattice value first-order logic[J]. Fuzzy Systems and Mathematics, 2011, 25(2):1-6.
[12] 杨丽, 徐扬. 基于概念格的语言真值不确定性推理[J]. 计算机应用研究, 2009, 26(2):553-554, 576. YANG Li, XU Yang. Linguistic truth-valued uncertainty reasoning based on concept lattice[J]. Application Research of Computers, 2009, 26(2):553-554, 576.
[13] 邹丽, 谭雪微, 张云霞. 语言真值直觉模糊逻辑的知识推理[J]. 计算机科学, 2014, 41(1):134-137. ZOU Li, TAN Xuewei, ZHANG Yunxia. Knowledge rea-soning based on linguistic truth-valued intuitionstic fuzzy logic[J]. Computer Science, 2014, 41(1):134-137.
[14] 郑宏亮, 徐本强, 邹丽. 一种基于十元格蕴涵代数的知识表示方法[J]. 计算机应用与软件, 2013, 30(1):37-40. ZHANG Hongliang, XU Benqiang, ZOU Li. An approach for knowledge representation based on ten-element lattice implication algebra[J]. Computer Application and Sof-tware, 2013, 30(1):37-40.
[15] 张云霞, 崔晓松, 邹丽. 一种基于十八元语言值模糊相似矩阵的聚类方法[J]. 山东大学学报, 2013, 43(1):1-7. ZHANG Yunxia, CUI Xiaosong, ZOU Li. A clustering method based on 18-element linguistic-valued fuzzy similar matrix[J]. Journal of Shandong University, 2013, 43(1):1-7.
[16] 孙芳, 张凤梅, 邹丽, 等. 基于六元格值命题逻辑的语言真值归结方法[J]. 广西师范大学学报:自然科学版, 2010, 28(3):118-121.SUN Fang, ZHANG Fengmei, ZOU Li, et al. Linguistic truth-valued resolution method based on six-element lattice-valued propositional logic[J]. Journal of Guangxi Normal University:Natural Science Edition, 2010, 28(3):118-121.
[17] 邹丽. 基于语言真值格蕴涵代数的格值命题逻辑及其归结自动推理研究[D]. 成都:西南交通大学, 2010:1-160. ZOU Li. Studies on lattice-valued propositional logic and its resolution-based automatic reasoning based on linguistic truth-valued lattice implication algebra[D]. Chengdu, China:Southwest Jiaotong University, 2010:1-160.

相似文献/References:

[1]王金英,韩晓冰,王艳平.二型直觉模糊粗糙集[J].智能系统学报编辑部,2015,10(6):943.[doi:10.11992/tis.201412013]
 WANG Jinying,HAN Xiaobing,WANG Yanping.Type-2 intuitionistic fuzzy rough sets[J].CAAI Transactions on Intelligent Systems,2015,10(5):943.[doi:10.11992/tis.201412013]

备注/Memo

备注/Memo:
收稿日期:2014-10-08;改回日期:。
基金项目:国家自然科学基金资助项目(61105059,61175055,61173100).
作者简介:邹丽,女,1971年生,副教授,博士,主要研究方向为多值逻辑与不确定性推理、智能信息处理,发表学术论文70余篇;谭雪微,女,1990年生,硕士研究生,主要研究方向为多值逻辑与不确定性推理、智能信息处理;温欣,女,1989年生,硕士研究生,主要研究方向为多值逻辑与不确定性推理、智能信息处理。
通讯作者:谭雪微.E-mail:tan_xue_wei@163.com.
更新日期/Last Update: 2015-11-16