[1]郑晓,薄华,孙强.QR分解与特征值优化观测矩阵的算法研究[J].智能系统学报,2015,10(01):149-155.[doi:10.3969/j.issn.2013-0934.201309034]
 ZHENG Xiao,BO Hua,SUN Qiang.An algorithm for measurement matrix based on QR decomposition and eigenvalue optimizatio[J].CAAI Transactions on Intelligent Systems,2015,10(01):149-155.[doi:10.3969/j.issn.2013-0934.201309034]
点击复制

QR分解与特征值优化观测矩阵的算法研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年01期
页码:
149-155
栏目:
出版日期:
2015-03-25

文章信息/Info

Title:
An algorithm for measurement matrix based on QR decomposition and eigenvalue optimizatio
作者:
郑晓1 薄华1 孙强2
1. 上海海事大学 信息工程学院, 上海 201306;
2. 西安理工大学 自动化与信息工程学院, 陕西 西安 710000
Author(s):
ZHENG Xiao1 BO Hua1 SUN Qiang2
1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
2. Automation and Information Engineering College, Xi’an University of Technology, Xi’an, 710000, China
关键词:
压缩感知稀疏基观测矩阵重构算法QR分解特征值列独立性非相干性
Keywords:
compressed sensingsparse basismeasurement matrixreconstruction algorithmQR decompositioneigenvaluecolumn independenceincoherenc
分类号:
TP391.9
DOI:
10.3969/j.issn.2013-0934.201309034
文献标志码:
A
摘要:
观测矩阵的构造是压缩感知中的核心部分之一,观测矩阵的列独立性,观测矩阵与稀疏基的非相干性,对重构图像的质量有重要影响,基于此提出了一种优化算法。该算法实现对观测矩阵进行QR分解以增大其列独立性,同时对格拉姆矩阵进行优化,使其归一化后的特征值逼近N/M,从而增大观测矩阵与稀疏基的非相干性。仿真结果显示,算法在提高图像重构质量,以及重构结果稳定性上都有较好的结果,尤其是在观测值个数较少的情况下,有比其他算法更明显的优势。
Abstract:
Measurement matrix is a core part of compressed sensing. The column independence of measurement matrix and the incoherence between measurement matrix and sparse basis have a major impact on the quality of a reconstructed image. This paper proposes a new algorithm of measurement matrix based on QR decomposition and eigenvalue. The column independence of the measurement matrix is increased by QR decomposition and at the same time the Gram matrix is optimized. Therefore, the eigenvalue of the normalized Gram matrix approximates to N/M so as to increases the incoherence between measurement matrix and sparse basis. The simulation results showed that the proposed method has excellent results on the aspects of increasing the quality of reconstructed image. In addition, the stability of the reconstructed results had more apparent advantages than other algorithms in the case of less number of observed values.

参考文献/References:

[1] ELAD M.Optimized projections for compressed sensing[J].IEEE Transaction on Signal Processing, 2007, 55(12): 5695-5702.
[2] DINH M N. Efficientprojection for compressed sensing[C]//7th ACIS International CONFerence on Computer and Information Science.Oregon, America,2008:322-327.
[3] JULIO M D,GUILLERMO S. Learning to sense sparse signals:Simultaneous sensing matrix and sparsifying dictionary optimization[J]. IEEE Transactions on Image Processing, 2009, 18(7):1395-1408.
[4] CAO Z.Optimized projection matrix for compressive sensing[J]. EURAIP Journal Advances in Signal Processing, 2010(43):55-60.
[5] YU Lifeng, LI Gang, CHANG Liping.Optimizing projection matrix for compressed sensing systems[C]//8th International Conference on Communnicationand Signal Processing, 2011: 1-5.
[6] EVAGGLIAT,LISIMACHOS P K, AGGELOS K K.Useof tight frames for optimized compressed sensing[C]//20th European Signal Processing Conference, Bucharest, 2012: 1439-1443.
[7] VAHID A, SAIDEH F, SAEID S. A gradient-based alternating minimization approach for optimization of measurement matrix in compressive sensing[J].Signal Processing, 2012, 92(4): 999-1009.
[8] THONG T D, LU Gan, NAM H N,et al.Fast and efficientcompressive sensing using structurally random matrices[J].IEEE Transactions on Signal Processing, 2012, 60(1): 139-154.
[9] WEI Chen, MIGUEL R D. On the use of unit-norm tight frames to improve the use of MSE performance in compressive sensing application[J].Transactions on Signal Processing Letter, 2012, 19(1): 8-11.
[10] TSILIGIANNI E, KONDI L P, KATSAGGELOS A K. Use of tight frames for optimized compressed sensing[C]//20th European Signal Processing ConferenceBucharest, 2012: 1439-1443.
[11] 赵瑞珍,秦周,胡绍海.一种基于特征值分解的测量矩阵优化方法[J].信号处理, 2012, 28(5): 653-658.Zhao Ruizhen, QIN Zhou. An method based on eigenvalue decomposition to optimize measurement matrix[J]. Signal Processing, 2012, 28 (5): 653-658.
[12] 傅迎华.可压缩传感重构算法与近似QR分解[J]. 计算机应用, 2008, 28(9): 2300-2302.FU Ying hua. Reconstruction algorithm of compressed sensing and QR decomposition [J]. Computer Applications, 2008, 28(9): 2300-2302.
[13] 彭玉楼,何怡刚,林斌.基于奇异值分解的压缩感知噪声信号重构算法[J].仪器仪表学报, 2012, 33(12): 2655-2660.PENG Yulou, YI Gang, LIN Bin. Reconstruction algorithm of compressed sensing noise signal based on singular value decomposition[J]. Journal of Scientific Instrument, 2012,33 (12): 2655-2660.
[14] DONOHO. Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
[15] YAAKOV TSAIG,DAVID L. Extensions of Compressed sensing[J]. Signal Processing, 2006, 86(3):533-548.
[16] DAVID L. Compressed sensing[J]. Information Theory, 2006, 52(4): 1289-1306.

相似文献/References:

[1]赵春晖,刘巍.压缩感知理论及其在成像技术中的应用[J].智能系统学报,2012,7(01):21.
 ZHAO Chunhui,LIU Wei.Compressive sensing theory and its application in imaging technology[J].CAAI Transactions on Intelligent Systems,2012,7(01):21.
[2]唐琳,焦淑红.基于近似消息传递算法的压缩感知雷达成像方法[J].智能系统学报,2015,10(04):592.[doi:10.3969/j.issn.1673-4785.201411025]
 TANG Lin,JIAO Shuhong.Compressed sensing radar imaging using approximate message passing[J].CAAI Transactions on Intelligent Systems,2015,10(01):592.[doi:10.3969/j.issn.1673-4785.201411025]
[3]史东承,倪康.压缩感知W-HOG特征的运动手势跟踪[J].智能系统学报,2016,11(1):124.[doi:10.11992/tis.201507005]
 SHI Dongcheng,NI Kang.Motion gesture tracking based on compressed sensing W-HOG features[J].CAAI Transactions on Intelligent Systems,2016,11(01):124.[doi:10.11992/tis.201507005]
[4]张龙,陈宸,韩宁,等.压缩感知理论中的建筑电气系统故障诊断[J].智能系统学报,2014,9(02):204.[doi:10.3969/j.issn.1673-4785.201310026]
 ZHANG Long,CHEN Chen,HAN Ning,et al.Fault diagnosis of electrical systems in buildingsbased on compressed sensing[J].CAAI Transactions on Intelligent Systems,2014,9(01):204.[doi:10.3969/j.issn.1673-4785.201310026]
[5]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(03):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12(01):279.[doi:10.11992/tis.201606037]
[6]孙必慎,石武祯,姜峰.计算视觉核心问题:自然图像先验建模研究综述[J].智能系统学报,2019,14(01):71.[doi:10.11992/tis.201804019]
 SUN Bishen,SHI Wuzhen,JIANG Feng.Core problem in computer vision: survey of natural image prior models[J].CAAI Transactions on Intelligent Systems,2019,14(01):71.[doi:10.11992/tis.201804019]
[7]陶霖密,袁春,王浩达.一种恢复图像自然色彩的重构方法[J].智能系统学报,2019,14(05):877.[doi:10.11992/tis.201805011]
 TAO Linmi,YUAN Chun,WANG Haoda.Reconstruction method for restoring the natural color of an image[J].CAAI Transactions on Intelligent Systems,2019,14(01):877.[doi:10.11992/tis.201805011]

备注/Memo

备注/Memo:
收稿日期:2013-9-12;改回日期:。
基金项目:国家自然科学基金资助项目(61001140).
作者简介:郑晓,女,1989年生,硕士研究生,主要研究方向为图像处理与模式识别;薄华,女,1971年生,副教授,主要研究方向为遥感图像处理、模式识别、人工智能。曾主持上海市教委项目,参加国家“863”计划国家自然科学基金项目多项,并以第二完成人获军队科技进步奖三等奖2次;孙强,男,1979年生,博士,副教授。主要研究方向为遥感图像处理与解译、机器学习、机器视觉和专用集成系统主持国家自然科学基金项目1项、陕西省教育厅自然科学专项2项;参加国家“973”计划、“863”计划、国家自然科学基金和国防部委资助的科研项目多项。
通讯作者:郑晓.E-mail:gofishingwan@163.com.
更新日期/Last Update: 2015-06-16