[1]刘昌芬,韩红桂,乔俊飞.广义逆向学习方法的自适应差分算法[J].智能系统学报,2015,10(1):131-137.[doi:10.3969/j.issn.1673-4785.201310068]
 LIU Changfen,HAN Honggui,QIAO Junfei.Self-adaptive DE algorithm via generalized opposition-based learning[J].CAAI Transactions on Intelligent Systems,2015,10(1):131-137.[doi:10.3969/j.issn.1673-4785.201310068]
点击复制

广义逆向学习方法的自适应差分算法

参考文献/References:
[1] STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[2] ALATAS B, AKIN E. MODENAR: multi-objective differential evolution algorithm for mining numeric association rules[J]. Applied Soft Computing, 2008, 8(1):646-656.
[3] DAS S, ABRAHAM A. Automatic clustering using an improved differential evolution algorithm[J].IEEE Trans on Systems Man and Cybernetics, 2008, 38(1): 218-237.
[4] FEOKTISTOV V. Differential evolution: in search of solutions[M]. New York: Springer Verlag, 2006: 205-276.
[5] CHAKRABORTY U. Advances in differential evolution[M]. Berline: Springer Verlag, 2008: 800-805.
[6] QING A. Differential evolution: fundamentals and applications in electrical engineering[M]. IEEE & John Wiley, 2009: 580-590.
[7] QING A, LEE C K. Differential evolution in electromagnetics[M]. Berlin: Springer Verlag, 2010:508-530.
[8] ONWUBOLU G C, DAVENDRA D. Differential evolution: a handbook for global permutation-based combinatorial optimization[M]. Berlin: Springer Verlag, 2009: 301-320.
[9] QIN A K, SUGANTHAN P N. Self-adaptive differential evolution algorithm for numerical optimization[J]. Proc IEEE Congr Evolut Comput, 2005, 2 (2): 1785-1791.
[10] ABBASS H A. The self-adaptive Pareto differential evolution algorithm[J]. Proc Congr Evolut Comput, 2002, 1: 831-836.
[11] OMRAN M G H, SALMAN A, ENGELBRECHT A P. Self-adaptive differential evolution[J]. Lecture Notes in Artificial Intelligence, 2005, 3801: 192-199.
[12] TEO J. Exploring dynamic self-adaptive populations in differential evolution[J]. Soft Comput, 2006, 10 (8): 637-686.
[13] QIN A K, HUANG V L, SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Trans Evolut Comput, 2009, 13(2): 398-417.
[14] RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition based differential evolution[J].IEEE Trans Evolut Comput, 2008, 12(1): 64-79.
[15] 吴亮红,王耀南,袁小芳.自适应二次变异差分进化算法[J].控制与决策, 2006, 21(8): 898-902.WU Lianghong, WANG Yaonan, YUAN Xiaofang. Differential evolution algorithm with adaptive second mutation[J].Control and Decision, 2006, 21(8): 898- 902.
[16] 陈亮.改进自适应差分算法及其应用研究[D]. 上海:东华大学,2012:39-40.CHEN Liang. Improved adaptive differential evolution algorithm and its applications[D]. Shanghai: Donghua University, 2010: 39-40.
[17] 刘荣辉. 多阶段自适应差分进化算法及应用研究[D].上海:东华大学, 2012: 23-29.LIU Ronghui. Multi-stage self-adapting differential evolution algorithm and its application[D].Shanghai: Donghua University, 2010: 39-40.
[18] WANG Hui, WU Zhijian, RAHNAMAYAN S. Enha nced opposition-based differential evolution for solving high-dimensional continuous optimization problems[J]. Soft Comput, 2010, 15(11): 2127-2140.
[19] RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition versus randomness in soft computing techniques[J]. Soft Comput, 2008, 8(2): 906-918.
[20] SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[J]. KanGAL Report, 2005, 2005005.
[21] 贾丽媛,张弛.自适应差分演化进化算法[J].中南大学学报:自然科学版, 2013, 44(9): 3759-3765.JIA Liyuan, ZHANG Chi. Self-adaptive differential evolution[J]. Journal of Central South University: Science and Technology, 2013, 44(9): 3759-3765.
[22] G?MPERLE R, MüLLER S D, KOUMOUTSAKOS P. A parameter study for differential evolution[J]. Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, 2002, 10: 293-298.
相似文献/References:
[1]赵云丰,尹怡欣,付冬梅,等.禁忌免疫网络算法及其在函数优化中的应用[J].智能系统学报,2008,3(5):393.
 ZHAO Yun-feng,YIN Yi-xin,FU Dong-mei,et al.Application of a Tabu immune network algorithm in function optim izations[J].CAAI Transactions on Intelligent Systems,2008,3(1):393.
[2]王霞,左一凡.视觉SLAM研究进展[J].智能系统学报,2020,15(5):825.[doi:10.11992/tis.202004023]
 WANG Xia,ZUO Yifan.Advances in visual SLAM research[J].CAAI Transactions on Intelligent Systems,2020,15(1):825.[doi:10.11992/tis.202004023]
[3]付常洋,王瑜,肖洪兵,等.基于深度学习与结构磁共振成像的抑郁症辅助诊断[J].智能系统学报,2021,16(3):544.[doi:10.11992/tis.201912006]
 FU Changyang,WANG Yu,XIAO Hongbing,et al.Assisted diagnosis of major depression disorder using deep learning and structural magnetic resonance imaging[J].CAAI Transactions on Intelligent Systems,2021,16(1):544.[doi:10.11992/tis.201912006]
[4]严家政,专祥涛.基于强化学习的参数自整定及优化算法[J].智能系统学报,2022,17(2):341.[doi:10.11992/tis.202012038]
 YAN Jiazheng,ZHUAN Xiangtao.Parameter self-tuning and optimization algorithm based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2022,17(1):341.[doi:10.11992/tis.202012038]

备注/Memo

收稿日期:2013-10-25;改回日期:。
基金项目:国家自然科学基金资助项目(61034008,61203099,61225016);北京市自然科学基金资助项目(4122006);教育部博士点新教师基金资助项目(20121103120020).
作者简介:刘昌芬,女,1990年生,硕士研究生,主要研究方向为智能控制理论及应用;韩红桂,男,1983年生,教授,主要研究方向为污水处理过程建模、优化与控制。申请国家发明专利13项,获专利授权7项。近5年来,发表学术论文30余篇。参与编写专著3部;乔俊飞,男,1968年生,教授,博士生导师,主要研究方向为智能信息处理、智能优化控制。教育部科技进步奖一等奖和北京市科学技术奖三等奖各1项,获国家发明专利授权12项。近5年发表学术论文近70篇,被SCI收录15篇。
通讯作者:乔俊飞.E-mail:liuchangfen2009@163.com.

更新日期/Last Update: 2015-06-16
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134