[1]肖艳丽,张振宇,杨文忠.移动数据的交通出行方式识别方法[J].智能系统学报,2014,9(05):536-543.[doi:10.3969/j.issn.1673-4785.201404045]
 XIAO Yanli,ZHANG Zhenyu,YANG Wenzhong.Research of the identification methods for transportation modes based on mobile data[J].CAAI Transactions on Intelligent Systems,2014,9(05):536-543.[doi:10.3969/j.issn.1673-4785.201404045]
点击复制

移动数据的交通出行方式识别方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年05期
页码:
536-543
栏目:
出版日期:
2014-10-25

文章信息/Info

Title:
Research of the identification methods for transportation modes based on mobile data
作者:
肖艳丽 张振宇 杨文忠
新疆大学 信息科学与工程学院, 新疆 乌鲁木齐 830046
Author(s):
XIAO Yanli ZHANG Zhenyu YANG Wenzhong
School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
关键词:
交通出行方式识别用户行为移动数据无线网络技术传感器
Keywords:
identification of transportation modesuser behaviormobile datawireless network technologysensors
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201404045
摘要:
识别用户出行的交通方式,对理解用户移动性、交通状况的分析和预测、社会活动模式挖掘等方面起着非常关键的作用。随着无线网络技术的快速发展,越来越多的传感器被用于收集移动数据,如何通过收集的信息准确地识别用户不同的交通出行方式,近年来得到了广泛的研究。针对已有的从不同角度识别交通方式的方法,首先介绍了每种方法的具体内容及应用,然后对不同方法进行分类研究,并重点分析了各类方法的特点,分析几种不同方法在不同条件下的识别精确度,最后,给出了交通方式识别方法的进一步研究方向。
Abstract:
Identification of different transportation modes in the process of user travel plays an important role in understanding individuals’ mobility, analyzing and forecasting traffic conditions and mining social activity pattern. With the rapid development of wireless network technology, more and more sensors are used to collect mobile data. Specially, how to accurately identify user’s different transportation modes from the collected data has been extensively researched in recent years. In addition, the methods of identification proposed from different points of view to solve the problem were studied in this paper. Each method and its application was introduced in detail and then classified and researched, respectively. The focus of analysis is put on the characteristics of each method. The levels of the recognition accuracy of different methods under different conditions were analyzed in table form. Finally, the research directions of the identification methods for transportation modes were further discussed.

参考文献/References:

[1] MIAO Lin, HSU Wenjing. Mining GPS data for mobility patterns:a survey[EB/OL].[2014-06-20] http://www.sciencedirect.com/science/article/pii/S1574119213000825.
[2] 谢幸, 郑宇.基于地理信息的用户行为理解[J].计算机学会通讯, 2008, 4(10):45-51.XIE Xing, ZHEN Yu.To understand user behavior based on geographical information[J].Communications of the CCF, 2008, 4(10):45-51.
[3] 张治华.基于GPS轨迹的出行信息提取研究[D].上海:华东师范大学, 2010:15-51.ZHANG Zhihua. Deriving trip information from gps trajectories[D].Shanghai:East China Normal University, 2010:15-51.
[4] YANG Jun. Toward physical activity diary:motion recognition using simple acceleration features with mobile phones[C]//Proceedings of the 1st International workshop on Interactive multimedia for consumer electronics. Beijing:ACM Press, 2009:1-10.
[5] RAVI N, DANDEKAR N, MYSORE P, et al. Activity recognition from accelerometer data[C]//Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence. Pittsburgh:AAAI Press, 2005:1541-1546.
[6] WANG S, CHEN C, MA J. Accelerometer based transportation mode recognition on mobile phones[C]//2010 Asia-Pacific Conference on Wearable Computing Systems (APWCS).Shenzhen, China, 2010:44-46.
[7] WANG H, CALABRESE F, DI LORENZO G, et al. Transportation mode inference from anonymized and aggregated mobile phone call detail records[C]//2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC). Piscataway:IEEE, 2010:318-323.
[8] XU Dafeng, SONG Guojie, GAO Peng, et al. Transportation modes identification from mobile phone data using probabilistic models[C]//Proceedings of the 7th International Conference on Advanced Data Mining and Applications. Beijing:China, 2011:359-371.
[9] MULLER IAH. Practical activity recognition using GSM data[C]//Proceedings of the 5th International Semantic Web Conference (ISWC).Athens, 2006:1-8.
[10] ANDERSON I, MULLER H. Exploring GSM data in pervasive environments[J]. International Journal of Pervasive Computing and Communications, 2008, 4(1):8-25.
[11] SOHN T, VARSHAVSKY A, LAMARCA A, et al. Mobility detection using everyday gsm traces[C]//UbiComp 2006:Ubiquitous Computing. Orange County:Springer Berlin Heidelberg, 2006:212-224.
[12] GONZALEZ P, WEINSTEIN J, BARBEAU S, et al. Automating mode detection using neural networks and assisted GPS data collected using gps-enabled mobile phones[J].Intelligent Transport Systems, 2010, 4(1):37-49.
[13] PATTERSON DJ, LIAO Like, WANG Longhao, et al. Inferring high-level behavior from low-level sensors[C]//UbiComp 2003:Ubiquitous Computing. Seattle:Springer Berlin Heidelberg, 2003:73-89.
[14] ZHENG Yu, LIU Like, WANG Longhao, et al. Learning transportation mode from raw GPS data for geographic applications on the web[C]//Proceedings of the 17th International Conference on World Wide Web. Beijing:ACM, 2008:247-256.
[15] ZHENG Yu, CHEN Yukun, LI Quannan, et al. Understanding transportation modes based on GPS data for web applications[J].ACM Transactions on the Web(TWEB), 2010, 4(1):1-36.
[16] ZHENG Yu, LI Quannan, CHEN Yingying, et al. Understanding mobility based on GPS data[C]//Proceedings of the 10th International Conference on Ubiquitous Computing. South Korea ACM, 2008:312-321.
[17] LIN M, HSU W J, LEE Z Q. Detecting modes of transport from unlabelled positioning sensor data[J].Journal of Location Based Services, 2013:1-19.
[18] LIAO L. Location-based activity recognition[D].Washington:University of Washington, 2006:1-35.
[19] LAFFERTY J, MCCALLUM A, PEREIRA FCN. Conditional random fields:Probabilistic models for segmenting and labeling sequence data[C]//Proceedings of International Conference on Machine Learning. Williams Town:ACM, 2001:282-289.
[20] LIAO L, PATTERSON DJ, FOX D, et al. Learning and inferring transportation routines[J]. Artificial Intelligence, 2007, 171(5):311-331.
[21] SUN Zhanbo, BAN Xungang. Vehicle classification using GPS data[J].Transportation Research Part C:Emerging Technologies, 2013, 37:102-117.
[22] 张德欣, 刘小明, 孙立光, 等. 基于大规模定位数据的出行方式模糊判别研究[J]. 交通信息与安全, 2011, 29(2):1-4. ZHANG Dexin, LIU Xiaoming, SUN Liguang, et al. Fuzzy classification of trip mode based on large scale location data[J]. Journal of Transport Information and Safety, 2011, 29(2):1-4.
[23] PARKKA J, ERMES M, KORPIPAA P, et al. Activity classification using realistic data from wearable sensors[J].IEEE Transactions on, 2006, 10(1):119-128.
[24] ERMES M, PARKKA J, MANTYJARVI J, et al. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions[J].IEEE Transactions on Information Technology in Biomedicine, 2008, 12(1):20-26.
[25] BAO L, INTILLE SS. Activity recognition from user-annotated acceleration data[C]//Proceceedings of the 2nd International Conference on Pervasive Computing. Vienna:Springer Berlin Heidelberg, 2004:1-17.
[26] LESTER J, CHOUDHURY T, BORRIELLO G.A practical approach to recognizing physical activities[M]//Pervasive Computing. Berlin:Springer Berlin Heidelberg, 2006:1-16
[27] TROPED P J, OLIVEIRA M S, MATTHEWS C E, et al. Prediction of activity mode with global positioning system and accelerometer data[J].Medicine and Science in Sports and Exercise, 2008, 40(5):972-979.
[28] REDDY S, MUN M, BURKE J, et al. Using mobile phones to determine transportation modes[J].ACM Transactions on Sensor Networks(TOSN), 2010, 6(2):13-40.
[29] MILUZZO E, LANE ND, FODOR K, et al. Sensing meets mobile social networks:the design, implementation and evaluation of the CenceMe application[C]//Proceedings of the 6th ACM Conference on Embedded Network sensor Systems. Raleigh:ACM Press, 2008:337-350.
[30] MUN M, ESTRIN D, BURKE J, et al. Parsimonious mobility classification using GSM and WiFi traces[C]//Proceedings of the 5th Workshop on Embedded Networked Sensors (HotEmNets).Charlottesville:ACM, 2008:1-5.
[31] MUN MY, SEO YW. Everyday mobility context classification using radio beacons[C]//Consumer Communications and Networking Conference.Las Vegas:IEEE, 2013:112-117.
[32] STOPHER P, FITZGERALD C, ZHANG J. Search for a global positioning system device to measure person travel[J]. Transportation Research Part C:Emerging Technologies, 2008, 16(3):350-369.
[33] STENNETH L, WOLFSON O, YU P S, et al. Transportation mode detection using mobile phones and GIS information[C]//Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago:ACM, 2011:54-63.
[34] TSUI S Y A, SHALABY A S. Enhanced system for link and mode identification for personal travel surveys based on global positioning systems[J].Transportation Research Record:Journal of the Transportation Research Board, 2006, 1972(1):38-45.
[35] GONG H, CHEN C, BIALOSTOZKY E, et al. A GPS/GIS method for travel mode detection in New York City[J]. Computers, Environment and Urban Systems, 2012, 36(2):131-139.
[36] LIAO L, PATTERSON D J, FOX D, et al. Learning and inferring transportation routines[J].Artificial Intelligence, 2007, 171(5):311-331.
[37] CHUNG E H, SHALABY A.A trip reconstruction tool for GPS-based personal travel surveys[J].Transportation Planning and Technology, 2005, 28(5):381-401.
[38] 周小红, 刘松. 基于GIS的城市交通出行方式自动识别模型 [J].现代测绘, 2013, 36(3):46-48.
[39] YAN Z, SUBBARAJU V, CHAKRABORTY D, et al. Energy efficient continuous activity recognition on mobile phones:an activity-adaptive approach[C]//2012 16th International Symposium on Wearable Computers (ISWC). Newcastle:IEEE, 2012:17-24.
[40] WANG Y I, LIN JIALIU, ANNAVARAM M, et al. A framework of energy efficient mobile sensing for automatic user state recognition[C]//Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services.ACM, Kraków, 2009:179-192.
[41] YU MC, YU T, LIN C J, et al. Low power and low cost sensor hub for transportation-mode detection[EB/OL].[2013-02-03]. Studio Engineering, HTC, Tech Rep, 2013.http://www.csie.ntu.edu.tw/cjlin/papers/transportation-mode/transportation.pdf.
[42] YU T, WANG S C, YU M C, et al. Careful use of machine learning methods is needed for mobile applications:a case study on transportation-mode detection[R]. Studio Engineering, HTC, 2013.
[43] MUNISANKAR M, NAGENDRA R. Transportation Mode Recognition with Zigbee Using Accelerometer[J]. International Journal of Emerging Technology and Advanced Engineering, 2012, 2(5):155-163.

备注/Memo

备注/Memo:
收稿日期:2014-04-23。
基金项目:国家自然科学基金资助项目(61262089,61262087);新疆教育厅高校教师科研计划重点资助项目(XJEDU2012I09);新疆大学博士毕业生科研启动基金资助项目(BS110127).
作者简介:张振宇, 男1964年生, 副教授, 主要研究方向为模式识别技术、数据挖掘、移动对等网络、机会网络等;杨文忠, 男, 1971年生, 博士, 副教授。主要研究方向为, 物联网、数据挖掘、信息安全等。
通讯作者:肖艳丽, 女, 1989年生, 主要研究方向为数据挖掘、模式识别技术等。E-mail:xiaoyanli1314@163.com.
更新日期/Last Update: 1900-01-01